• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
CHANG Long-fei, LI Chao-qun, NIU Qing-zheng, YANG Qian, HU Xiao-pin, HE Qing-song, WU Yu-cheng. Speed Control System of Soft Robotic Fish Actuated by IPMC[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 157-165. doi: 10.11993/j.issn.2096-3920.2019.02.006
Citation: CHANG Long-fei, LI Chao-qun, NIU Qing-zheng, YANG Qian, HU Xiao-pin, HE Qing-song, WU Yu-cheng. Speed Control System of Soft Robotic Fish Actuated by IPMC[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 157-165. doi: 10.11993/j.issn.2096-3920.2019.02.006

Speed Control System of Soft Robotic Fish Actuated by IPMC

doi: 10.11993/j.issn.2096-3920.2019.02.006
  • Received Date: 2016-11-19
  • Rev Recd Date: 2016-12-18
  • Publish Date: 2019-04-30
  • Independent operation and closed-loop speed control are very important for practical application of ionic polymer-metal composite (IPMC)-actuated robotic fish. However, due to the low force output of IPMC, the load capacity of the robotic fish is limited, which poses demanding requirements for weight and volume of the sensors and control units. In addition, the speed signal acquisition and processing are relatively difficult, therefore the existing IPMC-actuated robotic fish usually adopts open-loop control, while the speed feedback control of the IPMC-based independent robotic fish has not yet been realized. This study fabricated an independent IPMC robotic fish without external power supply, and implemented its closed-loop speed control. An inertial measurement unit (IMU) device was used to measure the speed, and a proportional-integral-differential (PID) controller feedback speed control system was designed. The control system was simulated by MATLAB, and the printed circuit board (PCB) was fabricated by using such electronic devices as single-chip microcomputer and gyroscope. Some IPMC materials with good performance were used to make the prototype of the robotic fish with considerable load capacity. Experiment was carried out with preset speed of 3 mm/s and 6 mm/s, respectively, the results showed that the robotic fish could perform independently with precise speed control, and it reached the preset speed within 1.8 s. The steady-state error remained within mm/s, and the speed control error did not exceed 8%. This research may offer a reference for the study of closed-loop control of robotic fish swimming.

     

  • loading
  • [1]
    Rus D, Tolley M T. Design, Fabrication and Control of Soft Robots[J]. Nature, 2015, 521(7553): 467-475.
    [2]
    Kim S, Laschi C, Trimmer B. Soft Robotics: a Bioinspired Evolution in Robotics[J]. Trends in Biotechnology, 2013, 31(5): 287.
    [3]
    Deepak T, Christopher D R, William M K, et al. Soft Robotics: Biological Inspiration, State of the Art, and Future Research[J]. Applied Bionics & Biomechanics, 2014, 5(3): 99-117.
    [4]
    Chu W S, Lee K T, Song S H, et al. Review of Biomimetic Underwater Robots Using Smart Actuators[J]. Interna-tional Journal of Precision Engineering & Manufacturing, 2012, 13(7): 1281-1292.
    [5]
    李铁风, 李国瑞, 梁艺鸣, 等. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766.

    Li Tie-feng, Li Guo-rui, Liang Yi-ming, et al. Research Review of Structural Mechanism and Driving Materials of Software Robots[J]. Journal of Mechanics, 2016, 48(4): 756-766.
    [6]
    Asaka K, Oguro K, Nishimura Y, et al. Bending of Poly-electrolyte Membraneplatinum Composites by Electric Stimuli I. Response Characteristics to Various Waveforms[J]. Polymer Journal, 1995, 27: 436-440.
    [7]
    Baughman R H. Conducting Polymer Artificial Muscles[J]. Synthetic Metals, 1996, 78: 339-353.
    [8]
    Fukushima T, Asaka K, Kosaka A, et al. Fully Plastic Actuator through Layer-By-Layer Casting With Ionic- Liq-uid-Based Bucky Gel[J]. Angewandte Chemie-International Edition, 2005, 44(16): 2410-2413.
    [9]
    Tanaka T, Nishio I, Sun S T, et al. Collapse of Gels in an Electric Field[J]. Science, 1982, 218(4571): 467-469.
    [10]
    Kalia S, Avérous L. Biopolymers: Biomedical and Environmental Applications[M]. USA: Wiley, 2011.
    [11]
    Shahinpoor M. Potential Applications of Electroactive Polymer Sensors and Actuators in MEMS Technologies[J]. Proceedings of SPIE-the International Society for Optical Engineering, 2001, 4234: 203-214.
    [12]
    Jung K, Nam J, Choi H. Investigations on Actuation Characteristics of IPMC Artificial Muscle Actuator[J]. Sensors & Actuators A Physical, 2003, 107(2): 183-192.
    [13]
    Chen Z, Shatara S, Tan X. Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer-Metal Composite Caudal Fin[J]. IEEE/ASME Transactions on Mechatronics, 2009, 15(3): 448-459.
    [14]
    Mbemmo E, Chen Z, Shatara S, et al. Modeling of Bio-mimetic Robotic Fish Propelled by an Ionic Polymer-metal Composite Actuator[C]//IEEE International Conference on Robotics and Automation. Pasadena, CA, USA: IEEE, 2008: 689-694.
    [15]
    Chen Z. A Review on Robotic Fish Enabled by Ionic Polymer-metal Composite Artificial Muscles[J]. Robotics & Biomimetics, 2017, 4(1): 24.
    [16]
    Mojarrad M, Shahinpoor M. Biomimetic Robotic Propul-sion Using Polymeric Artificial Muscles[C]//IEEE International Conference on Robotics and Automation. Albuquerque, NM, USA: IEEE, 1997: 2152-2157.
    [17]
    Byungkyu K, Deok-Ho K, Jaehoon J, et al. A Biomimetic Undulatory Tadpole Robot Using Ionic Polymer Metal Composite Actuators[J]. Smart Materials & Structures, 2005, 14(6): 1-7.
    [18]
    Guo S, Ge Y, Li L, et al. Underwater Swimming Micro Robot Using IPMC Actuator[C]//IEEE International Conference on Mechatronics and Automation. Luoyang, Henan, China: IEEE, 2006: 249-254.
    [19]
    Ye X, Su Y, Guo S. A Centimeter-scale Autonomous Robotic Fish Actuated by IPMC Actuator[C]//IEEE International Conference on Robotics and Biomimetics. Sanya, China: IEEE, 2007: 262-267.
    [20]
    Aureli M, Kopman V, Porfiri M. Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(4): 603-614.
    [21]
    Shen Q, Wang T, Liang J, et al. Hydrodynamic Performance of a Biomimetic Robotic Swimmer Actuated by Ionic Polymer-metal Composite[J]. Smart Materials & Structures, 2013, 22(7): 075035.
    [22]
    Guo S, Fukuda T, Asaka K. A New Type of Fish-like Underwater Microrobot[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(1): 136-141.
    [23]
    苏玉东, 叶秀芬, 郭书祥. 基于IPMC驱动的自主微型机器鱼[J]. 机器人, 2010, 32(2): 262-270.

    Su Yu-dong, Ye Xiu-fen, Guo Shu-xiang. Autonomous Micro-robot Fish Based on IPMC Drive[J]. Robot, 2010, 32(2): 262-270.
    [24]
    Hubbard J J, Fleming M, Palmre V, et al. Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics[J]. IEEE Journal of Oceanic Engineering, 2014, 39(3): 540-551.
    [25]
    Chen Z, Um T I, Bart-Smith H. A Novel Fabrication of Ionic Polymer–metal Composite Membrane Actuator Ca-pable of 3-dimensional Kinematic Motions[J]. Sensors & Actuators A Physical, 2011, 168(1): 131-139.
    [26]
    Takagi K, Yamamura M, Luo Z W, et al. Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 1861-1866.
    [27]
    Yeom S W, Oh I K. A Biomimetic Jellyfish Robot Based on Ionic Polymer Metal Composite Actuators[J]. Smart Material Structures, 2009, 18(8): 085002.
    [28]
    Najem J, Sarles S A, Akle B, et al. Biomimetic jellyfish-inspired Underwater Vehicle Actuated by Ionic Polymer Metal Composite Actuators[J]. Smart Material Structures, 2012, 21(9): 299-312.
    [29]
    Kamamichi N, Yamakita M, Asaka K, et al. A Snake-like Swimming Robot Using IPMC Actuator/sensor[C]//IEEE International Conference on Robotics and Automation. Orlando, FL, USA: IEEE, 2006: 1812-1817.
    [30]
    Guo S, Fukuda T, Kato N, et al. Development of Underwater Microrobot Using ICPF Actuator[C]//Proceedings. 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium: IEEE, 1998: 1829-1834.
    [31]
    Tan X, Drew K, Nathan U, et al. An Autonomous Robotic Fish for Mobile Sensing[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 5424-5429.
    [32]
    Shen Q, Wang T, Wen L, et al. Modelling and Fuzzy Control of an Efficient Swimming Ionic Polymer-metal Composite Actuated Robot[J]. International Journal of Advanced Robotic Systems, 2013, 10(4): 1.
    [33]
    Rosly M A, Yussof H, Shaari M F, et al. Speed Control Mechanism for IPMC Based Biomimetic Flapping Thruster[C]//IEEE International Symposium on Robotics and Intelligent Sensors. Ottawa: IEEE, 2017: 218-223.
    [34]
    Webb B P W, Weihs D. Fish Biomechanics[M]. NewYork, America: Praeger Publishers, 1983: 312-338.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(626) PDF Downloads(442) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return