• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
WANG Yan-jie, HAO Mu-yu, ZHANG Lin, LUO Min-zhou. Progress of Biomimetic Underwater Robot Based on Intelligent Actuating Materials: a Review[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 123-133. doi: 10.11993/j.issn.2096-3920.2019.02.002
Citation: WANG Yan-jie, HAO Mu-yu, ZHANG Lin, LUO Min-zhou. Progress of Biomimetic Underwater Robot Based on Intelligent Actuating Materials: a Review[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 123-133. doi: 10.11993/j.issn.2096-3920.2019.02.002

Progress of Biomimetic Underwater Robot Based on Intelligent Actuating Materials: a Review

doi: 10.11993/j.issn.2096-3920.2019.02.002
  • Received Date: 2018-09-30
  • Rev Recd Date: 2018-12-15
  • Publish Date: 2019-04-30
  • It is one of the current research hotspots of biomimetic underwater robot to study and imitate the motion modes of aquatic animals and apply the intelligent actuating materials to the structure and motion design of a biomimetic underwater robot. Combined with the advantages of aquatic animals and intelligent actuating materials, the biomimetic underwater robot designed with intelligent actuating materials is easier to be miniaturized and higher maneuverability, so it can carry out continuous and flex-ible movement, and realize complex underwater motion. Compared with the traditional actuating mode, the biomimetic actuating mode has significant advantages. In this paper, the motion mechanisms of several typical aquatic animals are introduced. Com-parison of performance specifications, advantages and disadvantages of four typical intelligent materials. The existing biomimetic underwater robots that imitate the propulsion modes of aquatic animals and design with intelligent materials, and their structural features are summarized. The motion efficiency of these robots are analyzed and compared. As a result, some key problems that need to be solved in future development of the biomimetic underwater robots are pointed out.

     

  • loading
  • [1]
    Ellerby D J. Encyclopedia of Fish Physiology|| Buoyancy, Locomotion, and Movment in Fishes|Undulatory Swimming[J]. Encyclopedia of Fish Physiology, 2011: 547-554.
    [2]
    Alexander P. Robot Fish: Bio-inspired Fishlike Underwater Robots[J]. Underwater Technology, 2017, 34(3): 143-145.
    [3]
    Low K H. Current and Future Trends of Biologically Inspired Underwater Vehicles[C]//2011 Defense Science Research Conference and Expo(DSR). Singapore: IEEE, 2011: 1-8.
    [4]
    Trivedi D, Rahn C D, Kier W M, et al. Soft Robotics: Bi-ological Inspiration, State of the Art, and Future Research[J]. Applied Bionics and Biomechanics, 2008, 5(3): 99-117.
    [5]
    Trivedi D, Dienno D, Rahn C D. Optimal, Model-Based Design of Soft Robotic Manipulators[J]. Journal of Mechanical Design, 2007, 130(9): 801-809.
    [6]
    Carpi F, Bauer S, De Rossi D. Stretching Dielectric Elastomer Performance[J]. Science, 2010, 330(6012): 1759- 1761.
    [7]
    McHenry M J. Comparative Biomechanics: the Jellyfish Paradox Resolved[J]. Current Biology, 2007, 17(16): R632-R633.
    [8]
    McHenry M J, Jed J. The Ontogenetic Scaling of Hydro-dynamics and Swimming Performance in Jellyfish (Au-relia Aurita)[J]. Journal of Experimental Biology, 2003, 206(22): 4125-4137.
    [9]
    Bajcar T, Mala?i? V, Malej A, et al. Kinematic Properties of the Jellyfish Aurelia Sp[M]//Jellyfish Blooms: Causes, Consequences, and Recent Advances. Springer: Dor-drecht, 2008: 279-289.
    [10]
    Bartol I K, Patterson M R, Mann R. Swimming Mechanics and Behavior of the Shallow-water Brief Squid Lolli-guncula Brevis[J]. Journal of Experimental Biology, 2001, 204(21): 3655-3682.
    [11]
    Anderson E J, DeMont M E. The Mechanics of Locomotion in the Squid Loligo Pealei: Locomotory Function and Unsteady Hydrodynamics of the Jet and Intramantle Pressure[J]. Journal of Experimental Biology, 2000, 203(18): 2851-2863.
    [12]
    Sfakiotakis M, Lane D M, Davies J B C. Review of Fish Swimming Modes for Aquatic Locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252.
    [13]
    Boileau R, Fan L, Moore T. Mechanization of Rajiform Swimming Motion: The Making of Robo Ray[R]. Van-couver: University of British Columbia, 2002.
    [14]
    Lauder G V. Fish Locomotion: Recent Advances and New Directions[J]. Annual Review of Marine Science, 2015, 7: 521-545.
    [15]
    Rosenberger L J. Pectoral Fin Locomotion in Batoid Fishes: Undulation versus Oscillation[J]. Journal of Experimental Biology, 2001, 204(2): 379-394.
    [16]
    Guo S, Shi L, Ye X, et al. A New Jellyfish Type of Underwater Microrobot[C]//2007 International Conference on Mechatronics and Automation. Harbin, China: IEEE, 2007: 509-514.
    [17]
    Villanueva A, Smith C, Priya S. A Biomimetic Robotic Jellyfish(Robojelly) Actuated by Shape Memory Alloy Composite Actuators[J]. Bioinspiration & Biomimetics, 2011, 6(3): 036004.
    [18]
    王扬威, 王振龙, 李健. 形状记忆合金丝驱动的仿生喷射推进器[J]. 哈尔滨工业大学学报, 2011, 43(9): 33-37.

    Wang Yang-wei, Wang Zhen-long, Li Jian. A Biomimetic Water-jetting Vehicle Actuated by Shape Memory Alloy Wires[J]. Journal of Harbin Institute of Technology, 2011, 43(9): 33-37.
    [19]
    Gao F, Wang Z, Wang Y, et al. A Prototype of a Biomimetic Mantle Jet Propeller Inspired by Cuttlefish Actuated by SMA Wires and a Theoretical Model for Its Jet Thrust[J]. Journal of Bionic Engineering, 2014, 11(3): 412-422.
    [20]
    Chen Z, Um T I, Bart-Smith H. A Novel Fabrication of Ionic Polymer-metal Composite Membrane Actuator Capable of 3-dimensional Kinematic Motions[J]. Sensors and Actuators A: Physical, 2011, 168(1): 131-139.
    [21]
    Li T, Li G, Liang Y, et al. Fast-moving Soft Electronic Fish[J]. Science Advances, 2017, 3(4): e1602045.
    [22]
    Rossi C, Colorado J, Coral W, et al. Bending Continuous Structures with SMAs: a Novel Robotic Fish Design[J]. Bioinspiration & Biomimetics, 2011, 6(4): 045005.
    [23]
    Kamamichi N, Yamakita M, Asaka K, et al. A Snake-like Swimming Robot Using IPMC Actuator/Sensor[C]// Proceedings 2006 IEEE International Conference on Ro-botics and Automation. Orlando, USA: IEEE, 2006: 1812-1817.
    [24]
    Palmre V, Hubbard J J, Fleming M, et al. An IPMC-enabled Bio-inspired Bending/twisting Fin for Underwater Applications[J]. Smart Materials and Structures, 2012, 22(1): 014003.
    [25]
    Tan X, Drew K, Usher N, et al. An Autonomous Robotic Fish for Mobile Sensing[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 5424-5429.
    [26]
    郝丽娜, 徐夙, 刘斌. 基于 IPMC 驱动器的小型遥控机器鱼的研制[J]. 东北大学学报: 自然科学版, 2009, 30(6): 773-776.

    Hao Li-Na, Xu Su, Liu Bin. A Miniature Fish-like Robot with Infrared Remote Receiver and IPMC Actuator[J]. Journal of Northeastern University(Natural Science), 2009, 30(6): 773-776.
    [27]
    沈奇, 韩晨皓, 王田苗, 等. 基于IPMC仿生机器鱼推进效率实验研究[J]. 北京航空航天大学学报, 2014, 40(12): 1730-1735.

    Shen Qi, Han Chen-hao, Wang Tian-miao, et al. Experimental Investigation of Biomimetic Robotic Fish Actuated by IPMC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1730-1735.
    [28]
    Wen L, Ren Z, Di S V, et al. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins[J]. Soft Robotics, 2018, 5(4): 375-388.
    [29]
    Trivedi D, Dienno D, Rahn C D. Optimal, Model-Based Design of Soft Robotic Manipulators[J]. Journal of Mechanical Design, 2007, 130(9): 801-809.
    [30]
    Katzschmann R K, Marchese A D, Rus D. Hydraulic Autonomous Soft Roboti Fish for 3D Swimming[M]// Experimental Robotics. Switzerland: Springer International Publishing, 2015: 405-420.
    [31]
    Byungkyu K, Sunghak L, Jong H, et al. Inchworm-like Microrobot for Capsule Endoscope[C]//2004 IEEE International Conference on Robotics and Biomimetics. Shenyang, China: IEEE, 2004: 458-463.
    [32]
    Raj A, Thakur A. Fish-inspired Robots: Design, Sensing, Actuation, and Autonomy—a Review of Research[J]. Bi-oinspiration & Biomimetics, 2016, 11(3): 031001.
    [33]
    Voisembert S, Mechbal N, Riwan A, et al. Design of a Novel Long-range Inflatable Robotic Arm: Manufacturing and Numerical Evaluation of the Joints and Actuation[J]. Journal of Mechanisms and Robotics, 2013, 5(4): 045001.
    [34]
    Hunter I W, Lafontaine S. A Comparison of Muscle with Artificial Actuators[C]//Technical Digest IEEE Solid-State Sensor and Actuator Workshop. Hilton Head Island, USA IEEE, 1992: 178-185.
    [35]
    Bhandari B, Lee G Y, Ahn S H. A Review on IPMC Material as Actuators and Sensors: Fabrications, Characteristics and Applications[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(1): 141-163.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1314) PDF Downloads(878) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return