
| Citation: | WANG Yan-jie, HAO Mu-yu, ZHANG Lin, LUO Min-zhou. Progress of Biomimetic Underwater Robot Based on Intelligent Actuating Materials: a Review[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 123-133. doi: 10.11993/j.issn.2096-3920.2019.02.002 |
| [1] |
Ellerby D J. Encyclopedia of Fish Physiology|| Buoyancy, Locomotion, and Movment in Fishes|Undulatory Swimming[J]. Encyclopedia of Fish Physiology, 2011: 547-554.
|
| [2] |
Alexander P. Robot Fish: Bio-inspired Fishlike Underwater Robots[J]. Underwater Technology, 2017, 34(3): 143-145.
|
| [3] |
Low K H. Current and Future Trends of Biologically Inspired Underwater Vehicles[C]//2011 Defense Science Research Conference and Expo(DSR). Singapore: IEEE, 2011: 1-8.
|
| [4] |
Trivedi D, Rahn C D, Kier W M, et al. Soft Robotics: Bi-ological Inspiration, State of the Art, and Future Research[J]. Applied Bionics and Biomechanics, 2008, 5(3): 99-117.
|
| [5] |
Trivedi D, Dienno D, Rahn C D. Optimal, Model-Based Design of Soft Robotic Manipulators[J]. Journal of Mechanical Design, 2007, 130(9): 801-809.
|
| [6] |
Carpi F, Bauer S, De Rossi D. Stretching Dielectric Elastomer Performance[J]. Science, 2010, 330(6012): 1759- 1761.
|
| [7] |
McHenry M J. Comparative Biomechanics: the Jellyfish Paradox Resolved[J]. Current Biology, 2007, 17(16): R632-R633.
|
| [8] |
McHenry M J, Jed J. The Ontogenetic Scaling of Hydro-dynamics and Swimming Performance in Jellyfish (Au-relia Aurita)[J]. Journal of Experimental Biology, 2003, 206(22): 4125-4137.
|
| [9] |
Bajcar T, Mala?i? V, Malej A, et al. Kinematic Properties of the Jellyfish Aurelia Sp[M]//Jellyfish Blooms: Causes, Consequences, and Recent Advances. Springer: Dor-drecht, 2008: 279-289.
|
| [10] |
Bartol I K, Patterson M R, Mann R. Swimming Mechanics and Behavior of the Shallow-water Brief Squid Lolli-guncula Brevis[J]. Journal of Experimental Biology, 2001, 204(21): 3655-3682.
|
| [11] |
Anderson E J, DeMont M E. The Mechanics of Locomotion in the Squid Loligo Pealei: Locomotory Function and Unsteady Hydrodynamics of the Jet and Intramantle Pressure[J]. Journal of Experimental Biology, 2000, 203(18): 2851-2863.
|
| [12] |
Sfakiotakis M, Lane D M, Davies J B C. Review of Fish Swimming Modes for Aquatic Locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252.
|
| [13] |
Boileau R, Fan L, Moore T. Mechanization of Rajiform Swimming Motion: The Making of Robo Ray[R]. Van-couver: University of British Columbia, 2002.
|
| [14] |
Lauder G V. Fish Locomotion: Recent Advances and New Directions[J]. Annual Review of Marine Science, 2015, 7: 521-545.
|
| [15] |
Rosenberger L J. Pectoral Fin Locomotion in Batoid Fishes: Undulation versus Oscillation[J]. Journal of Experimental Biology, 2001, 204(2): 379-394.
|
| [16] |
Guo S, Shi L, Ye X, et al. A New Jellyfish Type of Underwater Microrobot[C]//2007 International Conference on Mechatronics and Automation. Harbin, China: IEEE, 2007: 509-514.
|
| [17] |
Villanueva A, Smith C, Priya S. A Biomimetic Robotic Jellyfish(Robojelly) Actuated by Shape Memory Alloy Composite Actuators[J]. Bioinspiration & Biomimetics, 2011, 6(3): 036004.
|
| [18] |
王扬威, 王振龙, 李健. 形状记忆合金丝驱动的仿生喷射推进器[J]. 哈尔滨工业大学学报, 2011, 43(9): 33-37.
Wang Yang-wei, Wang Zhen-long, Li Jian. A Biomimetic Water-jetting Vehicle Actuated by Shape Memory Alloy Wires[J]. Journal of Harbin Institute of Technology, 2011, 43(9): 33-37.
|
| [19] |
Gao F, Wang Z, Wang Y, et al. A Prototype of a Biomimetic Mantle Jet Propeller Inspired by Cuttlefish Actuated by SMA Wires and a Theoretical Model for Its Jet Thrust[J]. Journal of Bionic Engineering, 2014, 11(3): 412-422.
|
| [20] |
Chen Z, Um T I, Bart-Smith H. A Novel Fabrication of Ionic Polymer-metal Composite Membrane Actuator Capable of 3-dimensional Kinematic Motions[J]. Sensors and Actuators A: Physical, 2011, 168(1): 131-139.
|
| [21] |
Li T, Li G, Liang Y, et al. Fast-moving Soft Electronic Fish[J]. Science Advances, 2017, 3(4): e1602045.
|
| [22] |
Rossi C, Colorado J, Coral W, et al. Bending Continuous Structures with SMAs: a Novel Robotic Fish Design[J]. Bioinspiration & Biomimetics, 2011, 6(4): 045005.
|
| [23] |
Kamamichi N, Yamakita M, Asaka K, et al. A Snake-like Swimming Robot Using IPMC Actuator/Sensor[C]// Proceedings 2006 IEEE International Conference on Ro-botics and Automation. Orlando, USA: IEEE, 2006: 1812-1817.
|
| [24] |
Palmre V, Hubbard J J, Fleming M, et al. An IPMC-enabled Bio-inspired Bending/twisting Fin for Underwater Applications[J]. Smart Materials and Structures, 2012, 22(1): 014003.
|
| [25] |
Tan X, Drew K, Usher N, et al. An Autonomous Robotic Fish for Mobile Sensing[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 5424-5429.
|
| [26] |
郝丽娜, 徐夙, 刘斌. 基于 IPMC 驱动器的小型遥控机器鱼的研制[J]. 东北大学学报: 自然科学版, 2009, 30(6): 773-776.
Hao Li-Na, Xu Su, Liu Bin. A Miniature Fish-like Robot with Infrared Remote Receiver and IPMC Actuator[J]. Journal of Northeastern University(Natural Science), 2009, 30(6): 773-776.
|
| [27] |
沈奇, 韩晨皓, 王田苗, 等. 基于IPMC仿生机器鱼推进效率实验研究[J]. 北京航空航天大学学报, 2014, 40(12): 1730-1735.
Shen Qi, Han Chen-hao, Wang Tian-miao, et al. Experimental Investigation of Biomimetic Robotic Fish Actuated by IPMC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1730-1735.
|
| [28] |
Wen L, Ren Z, Di S V, et al. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins[J]. Soft Robotics, 2018, 5(4): 375-388.
|
| [29] |
Trivedi D, Dienno D, Rahn C D. Optimal, Model-Based Design of Soft Robotic Manipulators[J]. Journal of Mechanical Design, 2007, 130(9): 801-809.
|
| [30] |
Katzschmann R K, Marchese A D, Rus D. Hydraulic Autonomous Soft Roboti Fish for 3D Swimming[M]// Experimental Robotics. Switzerland: Springer International Publishing, 2015: 405-420.
|
| [31] |
Byungkyu K, Sunghak L, Jong H, et al. Inchworm-like Microrobot for Capsule Endoscope[C]//2004 IEEE International Conference on Robotics and Biomimetics. Shenyang, China: IEEE, 2004: 458-463.
|
| [32] |
Raj A, Thakur A. Fish-inspired Robots: Design, Sensing, Actuation, and Autonomy—a Review of Research[J]. Bi-oinspiration & Biomimetics, 2016, 11(3): 031001.
|
| [33] |
Voisembert S, Mechbal N, Riwan A, et al. Design of a Novel Long-range Inflatable Robotic Arm: Manufacturing and Numerical Evaluation of the Joints and Actuation[J]. Journal of Mechanisms and Robotics, 2013, 5(4): 045001.
|
| [34] |
Hunter I W, Lafontaine S. A Comparison of Muscle with Artificial Actuators[C]//Technical Digest IEEE Solid-State Sensor and Actuator Workshop. Hilton Head Island, USA IEEE, 1992: 178-185.
|
| [35] |
Bhandari B, Lee G Y, Ahn S H. A Review on IPMC Material as Actuators and Sensors: Fabrications, Characteristics and Applications[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(1): 141-163.
|