
| Citation: | HU Qiao, LIU Yu, ZHAO Zhen-yi, ZHU Zi-cai. Research Advances of Biomimetic Artificial Lateral Line Detection Technology for Unmanned Underwater Swarm[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 114-122. doi: 10.11993/j.issn.2096-3920.2019.02.001 |
| [1] |
Pham L V, Dickerson B, Sanders J, et al. UAV Swarm Attack: Protection System Alternatives for Destroyers[R]//Systems Engineering Project Report, California: Naval Postgraduate School, 2012.
|
| [2] |
Tyo J S. Hyperspectral Measurement of the Scattering of Polarized Light by Skin[J]. Proc Spie, 2011, 8160(22): 31.
|
| [3] |
孙荣光, 舒象兰, 曲大伟. 浅海声信道中的声纳脉冲传播多途效应[J]. 兵器装备工程学报, 2013, 34(12): 56-59.
Sun Rong-guang, Shu Xiang-lan, Qu Da-wei. Multipath Effect of Sonar Pulse Waveforms in Shallow Water[J]. Journal of Ordnance Equipment Engineering, 2013, 34(12): 56-59.
|
| [4] |
Zhang Y, Streitlien K, Bellingham J G, et al. Acoustic Doppler Velocimeter Flow Measurement from an Autonomous Underwater Vehicle with Applications to Deep Ocean Convection[J]. Journal of Atmospheric & Oceanic Technology, 2000, 18(12): 2038-2051.
|
| [5] |
Willcox J S, Bellingham J G, Zhang Y, et al. Performance Metrics for Oceanographic Surveys with Autonomous Underwater Vehicles[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 711-725.
|
| [6] |
Liu Y, Passino K M. Stability Analysis of Swarms in a Noisy Environment[C]//42nd IEEE International Conference on Decision and Control. Maui, HI, USA: IEEE, 2003.
|
| [7] |
Leonard N E, Fiorelli E. Virtual Leaders, Artificial Potentials and Coordinated Control of Groups[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, USA: IEEE, 2001.
|
| [8] |
Gallowaykevin C, Beckerkaitlyn P, PhillipsBrennan, et al. Soft Robotic Grippers for Biological Sampling on Deep Reefs[J]. Soft Robotics, 2016, 3(1): 23-33.
|
| [9] |
Yoon S, Qiao C. Cooperative Search and Survey Using Autonomous Underwater Vehicles(AUVs)[J]. IEEE Transactions on Parallel & Distributed Systems, 2011, 22(3): 364-379.
|
| [10] |
Byrne R H, Savage E L. Algorithms and Analysis for Underwater Vehicle Plume Tracing[R]. United States: Sandia National Laboratories, 2003.
|
| [11] |
Schulz B, Hobson B, Kemp M, et al. Field Results of Multi-UUV Missions Using Ranger Micro-UUVs[C]// Oceans 2003. San Diego, USA: IEEE, 2003: 956-961.
|
| [12] |
Chen J, Sun D, Yang J, et al. Leader-Follower Formation Control of Multiple Non-holonomic Mobile Robots Incorporating a Receding-horizon Scheme[J]. International Journal of Robotics Research, 2010, 29(6): 727-747.
|
| [13] |
Zhao W, Hu Y, Wang L. Construction and Central Pattern Generator-Based Control of a Flipper-Actuated Turtle-Like Underwater Robot[J]. Advanced Robotics, 2009, 23(1-2): 19-43.
|
| [14] |
Zou K, Wang C, Xie G, et al. Cooperative Control for Trajectory Tracking of Robotic Fish[C]//2009 American Control Conference. St. Louis, USA: IEEE, 2009: 5504-5509.
|
| [15] |
Shao J, Yu J, Wang L. Formation Control of Multiple Biomimetic Robotic Fish[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2007: 2503-2508.
|
| [16] |
Qiao G, Gan S, Liu S, et al. Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication[J]. Sensors, 2018, 18(6): 1700.
|
| [17] |
Voronina E P, Hughes D R. Lateral Line Scale Types and Review of Their Taxonomic Distribution[J]. Acta Zoologica, 2017, 99(1): 65-86.
|
| [18] |
Bleckmann H, Zelick R. Lateral Line System of Fish[J]. Integrative Zoology, 2006, 25(1): 411-453.
|
| [19] |
Mekdara P J, Schwalbe M, Coughlin L L, et al. The Effects of Lateral Line Ablation and Regeneration in Schooling Giant Danios[J]. Journal of Experimental Biology, 2018, 221(Pt 8): jeb.175166.
|
| [20] |
Rizzi F, Qualtieri A, Dattoma T, et al. Biomimetics of Underwater Hair Cell Sensing[J]. Microelectronic Engineering, 2015, 132: 90-97.
|
| [21] |
Liu G, Wang A, Wang X, et al. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish[J]. Applied Bionics and Biomechanics, 2016, 2016(5): 1-15.
|
| [22] |
Nelson K , Mohseni K . Design of a 3-D Printed, Modular Lateral Line Sensory System for Hydrodynamic Force Estimation[J]. Marine Technology Society Journal, 2017, 51(5): 103-115.
|
| [23] |
Liu G , Wang M , Wang A , et al. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System[J]. Sensors, 2018, 18(3): 838.
|
| [24] |
Tan S. Underwater Artificial Lateral Line Flow Sensors[J]. Microsystem Technologies, 2014, 20(12): 2123-2136.
|
| [25] |
Fan Z, Chen J, Zou J, et al. Design and Fabrication of Artificial Lateral Line Flow Sensors[J]. Journal of Micro-mechanics & Microengineering, 2002, 12(5): 655.
|
| [26] |
Yang Y, Nguyen N, Chen N, et al. Artificial Lateral Line with Biomimetic Neuromasts to Emulate Fish Sensing[J]. Bioinspiration & Biomimetics, 2010, 5(1): 16001.
|
| [27] |
Mcconney M E, Chen N, Lu D, et al. Biologically Inspired Design of Hydrogel-capped Hair Sensors for Enhanced Underwater Flow Detection[J]. Soft Matter, 2009, 5(2): 292-295.
|
| [28] |
Izadi N, Krijnen G J M. Design and Fabrication Process for Artificial Lateral Line Sensors[M]//Frontiers in Sensing. Vienna: Springer, 2012: 405-421.
|
| [29] |
Kottapalli A G P, Asadnia M, Miao J M, et al. A Flexible Liquid Crystal Polymer MEMS Pressure Sensor Array for Fish-like Underwater Sensing[J]. Smart Materials & Structures, 2012, 21(11): 115030.
|
| [30] |
Yaul F M, Bulovic V, Lang J H. A Flexible Underwater Pressure Sensor Array Using a Conductive Elastomer Strain Gauge[J]. Journal of Microelectromechanical Systems, 2012, 21(4): 897-907.
|
| [31] |
Asadnia M, Kottapalli A G P, Shen Z, et al. Flexible and Surface-Mountable Piezoelectric Sensor Arrays for Underwater Sensing in Marine Vehicles[J]. IEEE Sensors Journal, 2013, 13(10): 3918-3925.
|
| [32] |
Asadnia M, Kottapalli A G, Miao J, et al. Artificial Fish Skin of Self-powered Micro-electromechanical Systems Hair Cells for Sensing Hydrodynamic Flow Phenomena[J]. Journal of the Royal Society Interface, 2015, 12(111): 20150322.
|
| [33] |
Izadi N, De Boer M J, Berenschot J W, et al. Fabrication of Superficial Neuromast Inspired Capacitive Flow Sensors[J]. Journal of Micromechanics & Microengineering, 2010, 20(8): 085041.
|
| [34] |
Krijnen G, Lammerink T, Wiegerink R, et al. Cricket Inspired Flow-Sensor Arrays[C]//Sensors, 2007 IEEE. Atlanta, GA, USA: IEEE, 2007: 539-546.
|
| [35] |
Stocking J B, Eberhardt W C, Shakhsheer Y A, et al. A Capacitance-based Whisker-like Artificial Sensor for Fluid Motion Sensing[C]//Sensors, 2010 IEEE. Kona, HI, USA: IEEE, 2010: 2224-2229.
|
| [36] |
Baar J J V, Dijkstra M, Wiegerink R J, et al. Fabrication of Arrays of Artificial Hairs for Complex Flow Pattern Recognition[C]//Sensors, 2003 IEEE. Toronto, Canada: IEEE, 2004: 332-336.
|
| [37] |
Klein A, Bleckmann H. Determination of Object Position, Vortex Shedding Frequency and Flow Velocity Using Artificial Lateral Line Canals[J]. Beilstein Journal of Nano-technology, 2011, 2(1): 276-283.
|
| [38] |
Herzog H, Steltenkamp S, Klein A, et al. Micro-Machined Flow Sensors Mimicking Lateral Line Canal Neuromasts[J]. Micromachines, 2015, 6: 1189-1212.
|
| [39] |
Dagamseh A M K, Lammerink T S J, Kolster M L, et al. Dipole-source Localization Using Biomimetic Flow-sensor Arrays Positioned as Lateral-line System[J]. Sensors & Actuators A: Physical, 2010, 162(2): 355-360.
|
| [40] |
Chen J, Engel J, Chen N, et al. Artificial Lateral Line and Hydrodynamic Object Tracking[C]//IEEE International Conference on MICRO Electro Mechanical Systems, 2006. Mems 2006 Istanbul. Turkey: IEEE, 2006: 694-697.
|
| [41] |
Liu P, Zhu R, Que R. A Flexible Flow Sensor System and Its Characteristics for Fluid Mechanics Measurements[J]. Sensors, 2009, 9(12): 9533-9543.
|
| [42] |
Zhu Z, Horiuchi T, Kruusam?e K, et al. Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor[J]. Journal of Physical Chemistry B, 2016, 120(12): 3215-3225.
|
| [43] |
Kocer B, Zangrilli U, Akle B, et al. Experimental and Theoretical Investigation of Ionic Polymer Transducers in Shear Sensing[J]. Journal of Intelligent Material Systems and Structures, 2014, 14: 1-13.
|
| [44] |
Ahrari A, Lei H, Deb K, et al. Robust Design Optimization of Artificial Lateral Line System[EB/OL]. [2018- 05-06].http://pdfs.semanticscholar.org/85ab/9776ef0d412bed74811c9c9528d771561743.pdf
|
| [45] |
仲昆. 机器鱼人工侧线系统的设计与环境感知研究[D]. 南昌: 华东交通大学, 2014.
|
| [46] |
Zheng X, Wang C, Fan R, et al. Artificial Lateral Line Based Local Sensing between Two Adjacent Robotic Fish[J]. Bioinspiration & Biomimetics, 2017, 13(1): 016002.
|
| [47] |
Hu B, Hua C, Chen C, et al. MUBFP: Multi-User Beam-forming and Partitioning for Sum Capacity Maximization in MIMO Systems[J]. IEEE Vehicular Technology Society, 2016, 66(1): 233-245.
|
| [48] |
Lin X, Tao M, Xu Y, et al. Outage Probability and Finite-SNR Diversity-Multiplexing Tradeoff for Two-Way Relay Fading Channels[J]. IEEE Transactions on Vehicular Technology, 2013, 62(7): 3123-3136.
|
| [49] |
Vaidyanathan P P, Pal P. Sparse Sensing With Co-Prime Samplers and Arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586.
|
| [50] |
Vaidyanathan, P P. Theory of Sparse Coprime Sensing in Multiple Dimensions[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3592-3608.
|
| [51] |
Abdulsadda A T, Tan X B. Underwater Source Localization Using an IPMC-based Artificial Lateral Line[C]// IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 2719-2724.
|
| [52] |
Wu N L, Wu C, Tong G E, et al. Flow Recognition of Underwater Vehicle Based on the Perception Mechanism of Lateral Line[J]. Journal of Mechanical Engineering, 2016, 52(13): 54-59.
|
| [53] |
Boulogne L H, Wolf B J, Wiering M A, et al. Performance of Neural Networks for Localizing Moving Objects with an Artificial Lateral Line[J]. Bioinspiration & Biomimetics, 2017, 12(5): 056009.
|
| [54] |
Dagamseh A, Wiegerink R, Lammerink T, et al. Artificial Lateral-line System for Imaging Dipole Sources Using Beamforming Techniques[J]. Procedia Engineering, 2011, 25(35): 779-782.
|
| [55] |
Dagamseh A, Wiegerink R, Lammerink T, et al. Imaging Dipole Flow Sources Using an Artificial Lateral-line System Made of Biomimetic Hair Flow Sensors[J]. Journal of the Royal Society Interface, 2013, 10(83): 20130162.
|
| [56] |
Kamal S, Mohammed S K, Pillai P R S, et al. Deep Learning Architectures for Underwater Target Recognition[C]//2013 Ocean Electronics. Kochi, India: IEEE, 2013: 48-54.
|
| [57] |
Cao X, Zhang X, Yu Y, et al. Deep Learning-based Recognition of Underwater Target[C]//2016 IEEE International Conference on Digital Signal Processing. Beijing, China: IEEE, 2016: 89-93.
|
| [58] |
Chen Y, Xu X. The Research of Underwater Target Recognition Method Based on Deep Learning[C]//IEEE International Conference on Signal Processing, Communications and Computing. Xiamen, China: IEEE, 2017: 1-5.
|
| [59] |
Zhu P, Isaacs J, Fu B, et al. Deep Learning Feature Extraction for Target Recognition and Classification in Underwater Sonar Images[C]//IEEE Conference on Decision and Control. Melbourne, Australia: IEEE, 2017: 2724-2731.
|
| [60] |
Liu G, Gao S, Sarkodie G, et al. A Novel Biomimetic Sensor System for Vibration Source Perception of Autonomous Underwater Vehicles Based on Artificial Lateral Lines[J]. Measurement Science and Technology, 2018, 29: 125102.
|