• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
ZHANG Fei, LIU Zong-kai, ZHOU Ben-mou, LI Jun-wei. Optimization Effect of Lorentz Force on Local Perturbation of Flow Field around Submarine[J]. Journal of Unmanned Undersea Systems, 2019, 27(1): 014-19. doi: 10.11993/j.issn.2096-3920.2019.01.003
Citation: ZHANG Fei, LIU Zong-kai, ZHOU Ben-mou, LI Jun-wei. Optimization Effect of Lorentz Force on Local Perturbation of Flow Field around Submarine[J]. Journal of Unmanned Undersea Systems, 2019, 27(1): 014-19. doi: 10.11993/j.issn.2096-3920.2019.01.003

Optimization Effect of Lorentz Force on Local Perturbation of Flow Field around Submarine

doi: 10.11993/j.issn.2096-3920.2019.01.003
  • Received Date: 2018-09-19
  • Rev Recd Date: 2018-10-25
  • Publish Date: 2019-02-28
  • While a submarine navigates underwater, the drag against submarine increases for the reasons such as flow separation and boundary layer transition near the wall, which are resulted from fluid viscosity. Meanwhile, massive vortices appear in the flow field accompanied by abnormal vortex shedding. Based upon the viscous incompressible Navier-Stokes equation, this study employs the finite volume method to numerically simulate the submarine’s flow field with Re=107. The flow field and the force evolution on the submarine are analyzed respectively under the conditions of A=1, A=2, and A=3, where electromagnetic force(Lorentz force) is applied for flow field control. The results show that the vortices on the hull are effectively suppressed when the Lorentz force is applied to the junction of the hemispherical forebody and midbody(A=1, N=1.5). Applying Lorentz force to the top of fin(A=2, N=1.5) can effectively suppress the vortex shedding, and greatly reduce the drag force(horizontal component of force). Therefore, appropriate utilization of Lorentz force for controlling the boundary layer flow of the fin may efficaciously suppress the formation of irregular vortices and their shedding, and reduce flow noises, hence improve the stealth and the dynamic performance of a submarines. This study may provide a reference for optimization of submarine flow field.

     

  • loading
  • [1]
    Chase N, Carrica P M. Submarine Propeller Computations and Application to Self-propulsion of DARPA Suboff[J]. Ocean Engineering, 2013, 60: 68-80.
    [2]
    Shariati S K, Mousavizadegan S H. The Effect of Appendages on the Hydrodynamic Characteristics of an Underwater Vehicle Near the Free Surface[J]. Applied Ocean Research, 2017, 67: 31-43.
    [3]
    Chen L, Gillivray I M. Characteristics of Sound Radiation by Turbulent Flow over a Hydrofoil and a Bare-hull SUBOFF[C]//Australian Acoustical Society Conference 2011, Acoustics 2011: Breaking New Ground. Gold Coast, Australia: Proceedings of Acoustics, 2011: 443-450.
    [4]
    Berger T W, Kim J, Lee C, et al. Turbulent Boundary Layer Control Utilizing the Lorentz Force[J]. Physics of Fluids, 2000, 12(3): 631-649.
    [5]
    张辉, 范宝春, 贺旺, 等. 电磁力作用下的绕流减阻与优化控制[J]. 兵工学报, 2010, 31(10): 1291-1297.

    Zhang Hui, Fan Bao-chun, He Wang, et al. Drag Reduction and Optimal Control of Cylinder Wake via Lorentz Force[J]. Acta Armamentarii, 2010, 31(10): 1291-1297.
    [6]
    Ask J, Davidson L. A Numerical Investigation of the Flow Past a Generic Side Mirror and its Impact on Sound Generation[J]. Journal of Fluids Engineering, 2009, 131(6): 061102.
    [7]
    Huang Y D, Zhou B M, Tang Z L, et al. Transition Scenario and Transition Control of The Flow over a Semi-infinite Square Leading-edge Plate[J]. Physics of Fluids, 2017, 29(7): 074105.
    [8]
    刘宗凯, 薄煜明, 王军, 等. 电磁力滤波与快速反射镜光学补偿在潜航器光轴稳定控制中的应用[J]. 物理学报, 2017, 66(8): 084704.

    Liu Zong-Kai, Bo Yu-Ming, Wang Jun, et al. Lorentz Force Filtering and Fast Steering Mirror Optical Compensation in Optical Axis Stability Control for Photoelectric Mast[J]. Acta Physica Sinica, 2017, 66(8): 084704.
    [9]
    Zhang H, Fan B C, Chen Z H. Numerical Study of the Suppression Mechanism of Vortices-induced Vibration by Symmetric Lorentz Forces[J]. Journal of Fluids and Structures, 2014, 48: 62-80.
    [10]
    Altintas A, Davidson L. Direct Numerical Simulation Analysis of Spanwise Oscillating Lorentz Force in Turbulent Channel Flow at Low Reynolds Number[J]. Acta Mechanica, 2017, 228(4): 1269-1286.
    [11]
    Lim S, Choi B. A Study on the MHD (magneto hydrodynamic) Micropump with Side-walled Electrodes[J]. Journal of Mechanical Science and Technology, 2009, 23(3): 739-749.
    [12]
    Albrecht T, Stiller J, Metzkes H. Electromagnetic Flow Control in Poor Conductors[J]. The European Physical Journal Special Topics, 2013, 220(1): 275-285.
    [13]
    Liu H X, Zhou B M, Liu Z K, et al. Numerical Simulation of Flow around a Body of Revolution with an Appendage Controlled by Electromagnetic Force[J]. Journal of Aero-space Engineering, 2013, 227(2): 303-310.
    [14]
    Breuer K S, Park J, Henoch C. Actuation and Control of a Turbulent Channel Flow Using Lorentz Forces[J]. Physics of Fluids, 2004, 16(4): 897-907.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(796) PDF Downloads(393) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return