• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
FAN Wei, ZHU Dai-zhu, ZHANG De-ze, ZENG Sai. A Method for Background Suppression of Sonar Image Using Gaussian Mixture Model and Radon Transform[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 492-497. doi: 10.11993/j.issn.2096-3920.2018.05.018
Citation: FAN Wei, ZHU Dai-zhu, ZHANG De-ze, ZENG Sai. A Method for Background Suppression of Sonar Image Using Gaussian Mixture Model and Radon Transform[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 492-497. doi: 10.11993/j.issn.2096-3920.2018.05.018

A Method for Background Suppression of Sonar Image Using Gaussian Mixture Model and Radon Transform

doi: 10.11993/j.issn.2096-3920.2018.05.018
  • Received Date: 2018-09-01
  • Rev Recd Date: 2018-10-08
  • Publish Date: 2018-10-31
  • The background of sonar image of small underwater moving target fluctuates with space and time. The background suppression is one of the key processes in sonar detection. In this paper, the Gaussian mixture model is used to model the amplitude variation of each azimuth-range resolution cell of sequential sonar image, so as to suppress the main background of highlight area and highlight band in the sonar image. In order to solve the problem of residual noise from the Gaussian mixture model, the continuous change characteristics of the track from an underwater moving target are considered, the line features of the history-accumulated sonar image are extracted, and the residual noise is filtered out by Radon transform and inverse Radon transform. The analysis of multi-beam sonar data from measurement under the conditions of small underwater target’s linear motion and cross-azimuth curvilinear motion shows that the complex sonar background can be removed and the clean sonar back-ground can be obtained by using the Gaussian mixture model and the filtering method via Radon transform, which can be used in sonar detection of underwater moving targets.

     

  • loading
  • [1]
    欧阳文, 朱卫国. 蛙人探测声纳系统研究进展[J]. 国防科技, 2012, 277(6): 53-57.
    [2]
    Fumitaka M, Akira A, Eric M, et.al. Automatic Signal Processing of Forward Looking Surveillance Sonar Data in Low Signal-to-noise Ratio Conditions[C]//2010 International Water Side Security Conference. Carrara, Italy: WSS, 2010: 1-7.
    [3]
    李轲, 刘忠, 毛盾. 基于反蛙人声纳的小目标检测算法[J]. 舰船电子工程, 2010, 30(7): 173-176.

    Li Ke,?Liu Zhong,?Mao Dun. Algorithm for Detection of Small Targetin Sonar Image Based on Anti-diver Sonar[J]. Ship Electronic Engineering, 2010, 30(7): 173-176.
    [4]
    赵海旭, 吴培荣, 王小雯, 等. 一种基于关联处理的声呐图像去噪技术[J]. 声学技术, 2016, 35(6): 571-574.

    Zhao Hai-xu, Wu Pei-rong, Wang Xiao-wen, et al. Sonar Image Denoising Technique Based on Relevancy Processing[J]. Technical Acoustics, 2016, 35(6): 571-574.
    [5]
    Yang T C, Schindall J, Huang C F, et al. Clutter Reduction Using Doppler Sonar in a Harbor Environment[J]. Journal of the Acoustical Society of America, 2012, 132(5): 3053-3067.
    [6]
    Ge Yu, Yang T C, Piao S C. Estimating the Delay-Doppler of Target Echo in a High Clutter Underwater Environment Using Wideband Linear Chirp Signals: Evaluation of Performance with Experimental Data[J]. Journal of the Acoustical Society of America, 2017, 142(4): 2047-2057.
    [7]
    查宇飞, 毕笃彦, 杨源, 等. 视频目标跟踪方法[M]. 北京: 国防工业出版社, 2015.
    [8]
    董佳佳. 基于声纳图像水下运动目标识别与跟踪技术研究[D]. 青岛: 中国海洋大学, 2011.
    [9]
    董静. 基于图像声纳的动目标检测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
    [10]
    Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking, Computer Vision and Pattern Recognition[C]//IEEE Computer Society Confer-ence on Computer Vision and Pattern Recognition. Fort Collins, CO, USA: IEEE, 1999: 246-252.
    [11]
    陈允锋, 潘谢帆. 一种应用于慢速小目标探测的图像干扰抑制技术[J]. 声学技术, 2015, 34(2): 31-32.

    Chen Yun-feng, Pan Xie-fan. An Image Interference Suppression Technology Applied to Detecting the Slow and Small Target[J]. Technical Acoustics, 2015, 34(2): 31-32.
    [12]
    何萌萌. 基于Radon变换的直线检测技术[D]. 哈尔滨: 哈尔滨工程大学, 2014.
    [13]
    Detect Lines Using the Radon Transform[EB/OL]. (2018- 08-09).https://www.mathworks.com/help/images/detect-lines-using-the-radon-transform.html.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(850) PDF Downloads(490) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return