• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
LU Jun, ZHANG Qun-fei, SHI Wen-tao. Analysis on the Key Technology of Integrated Underwater Detection and Communication[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 470-479. doi: 10.11993/j.issn.2096-3920.2018.05.015
Citation: LU Jun, ZHANG Qun-fei, SHI Wen-tao. Analysis on the Key Technology of Integrated Underwater Detection and Communication[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 470-479. doi: 10.11993/j.issn.2096-3920.2018.05.015

Analysis on the Key Technology of Integrated Underwater Detection and Communication

doi: 10.11993/j.issn.2096-3920.2018.05.015
  • Received Date: 2018-07-30
  • Rev Recd Date: 2018-09-12
  • Publish Date: 2018-10-31
  • The integrated technology combined with underwater acoustic communication and underwater detection possesses the advantages of reducing platform volume and power consumption, and enhancing concealment. However, the development of this technology is restricted by the physical characteristics, acoustic characteristics and underwater acoustic environment of a sonar. In this paper, an integrated detection and communication technology based on communication signals under the sharing system is researched by means of the existing radar communication integration technology, underwater acoustic communication and detection technology. The detection and communication performances of the commonly used underwater acoustic communication modulation mode are analyzed, and the modulation modes suitable for underwater shared waveforms are selected. Aiming at the single base operation mode, a multi-level self-interference cancellation method and a method for estimating and detecting target based on the characteristics of communication signal are proposed, and a emiting leakage analog canceller is designed. Aiming at the bistatic operation mode, a spatial matrix filter is used to eliminate the direct waves, the relationship among signal-to-noise ratio(SNR), bit error rate(BER) and detection performance are analyzed, and the transmitted signal and echo wave which are obtained by direct wave are matched for filtering, so the performance of target parameter estimation and detection is improved.

     

  • loading
  • [1]
    李廷军, 任建存, 赵元立, 等. 雷达—通信一体化研究[J]. 现代雷达, 2001, 23(2): 1-2.

    Li Ting-jun, Ren Jian-cun, Zhao Yuan-li, et al. Research of Radar-Communication Integration[J]. Modern Radar, 2001, 23(2): 1-2.
    [2]
    Mealey R M. A Method for Calculating Error Probabilities in a Radar Communication System[J]. IEEE Transactions on Space Electronics & Telemetry, 1963, 9(2): 37-42.
    [3]
    Fiden W H, Czubiak D W. Radar-compatible Data Link System: US 7298313 B1[P]. 2007.
    [4]
    Coleman J O. Architecture for a Demonstration Radar communication Link[R]. Naval Research Lab Report, 1984.
    [5]
    Hughes P K, Choe J Y. Overview of Advanced Multifunction RF System(AMRFS)[C]//IEEE International Conference on Phased Array Systems and Technology, 2000. Dana Point, CA, USA: IEEE, 2000: 21-24.
    [6]
    Antonik P, Bonneau R, Brown R, et al. Bistatic Radar Denial/Embedded Communications Via Waveform Diversity[C]// Radar Conference, 2001. Proceedings of the Atlanta, GA, USA: IEEE, 2001: 41-45.
    [7]
    Cantrell B H, Coleman J O, Trunk G V. Radar Communications[R]. Naval Research Lab Report, 1981: 1-15.
    [8]
    Roberton M, Brown E R. Integrated Radar and Communications Based on Chirped Spread-spectrum Techniques[C]// IEEE MTT-S International Microwave Symposium Digest, Philadelphia, PA, USA: IEEE, 2003: 611-614.
    [9]
    Lu L I, LI G J, Li C Q. A Communication System Based on Active Phased-array Radar[J]. Journal of China Academy of Electronics & Information Technology, 2008, 2: 131-135.
    [10]
    Barrenechea P, Elferink F, Janssen J. FMCW Radar with Broadband Communication Capability[C]//Radar Conference, 2007. Boston, MA, USA: IEEE, 2007: 130-133.
    [11]
    Hassanien A, Himed B, Rigling B D. A Dual-function MIMO Radar-communications System Using Frequency-hopping Waveforms[C]//Radar Conference. Seattle, WA, USA: IEEE, 2017: 1721-1725.
    [12]
    李晓柏, 杨瑞娟, 程伟. 基于Chirp信号的雷达通信一体化研究[J]. 雷达科学与技术, 2012, 10(2): 180-186.

    Li Xiao-bai, Yang Rui-juan, Cheng Wei. Integrated Radar and Communication Based on Chirp[J]. Radar Science and Technology, 2012, 10(2): 180-186.
    [13]
    Liu Y, Liao G, Xu J, et al. Adaptive OFDM Integrated Radar and Communications Waveform Design Based on Information Theory[J]. IEEE Communications Letters, 2017, 21(10): 2174-2177.
    [14]
    Sturm C, Wiesbeck W. Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236-1259.
    [15]
    刘少华, 黄志星. 基于扩频的雷达通信一体化信号的设计[J]. 雷达科学与技术, 2014(1): 69-75.

    Liu Shao-hua, Huang Zhi-xing. Design of Intergrate Radar-Communication Signal Based on Spread Spectrum[J]. Radar Science and Technology, 2014(1): 69-75.
    [16]
    Mueller K. A New Digital Echo Canceler for Two-Wire Full-Duplex Data Transmission[J]. Communications IEEE Transactions on, 1976, 24(9): 956-962.
    [17]
    Chen H, Hou C, Liu W, et al. Efficient Two-Dimensional Direction-of-Arrival Estimation for a Mixture of Circular and Noncircular Sources[J]. IEEE Sensors Journal, 2016, 16(8): 2527-2536.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1832) PDF Downloads(879) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return