• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
ZHANG Hao-yu, HAN Yi-na, ZHAO Wei-kang, YANG Yi-xin, LIU Qing-yu. Key Technologies of Multistatic Sonar Fusion Detection[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 456-464. doi: 10.11993/j.issn.2096-3920.2018.05.013
Citation: ZHANG Hao-yu, HAN Yi-na, ZHAO Wei-kang, YANG Yi-xin, LIU Qing-yu. Key Technologies of Multistatic Sonar Fusion Detection[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 456-464. doi: 10.11993/j.issn.2096-3920.2018.05.013

Key Technologies of Multistatic Sonar Fusion Detection

doi: 10.11993/j.issn.2096-3920.2018.05.013
  • Received Date: 2018-08-06
  • Rev Recd Date: 2018-09-29
  • Publish Date: 2018-10-31
  • To solve the fusion detection problem for multistatic sonar, this paper discusses three key technologies, i.e., measurement model, data association, and tracker performance model. The measurement model includes the error distributions of time, azimuth, position and sound velocity, as well as the localization expression of a target. The expression of each error factor and the expression of localization error are given. Data association is an important part of fusion detection to solve the assignment problem between measurements and known targets. The methods of nearest neighbor data association and multiple hypothesis data association are introduced in detail. The two data association methods use the same data model, measurement model and motion model. Simulations on the nearest neighbor data association and multiple hypothesis data association show that the target can be well tracked. The tracker performance model is used to evaluate the output quality of the tracker. The output quality is evaluated according to three performance parameters, i.e., tracking probability of detection, tracking fragmentation, and false alarm rate if tracking. According to the performance parameters from simulation, the output quality of the multiple hypothesis data association tracker is significantly better than that of the nearest neighbor data association tracker.

     

  • loading
  • [1]
    徐菲. 双/多基地声呐及其研究概况[J]. 科技广场, 2017(8): 73-77.

    Xu Fei. Introduction on Bistatic/Multistatic Sonar and its Research Survey[J]. Science Mosaic, 2017(8): 73-77.
    [2]
    邹吉武. 多基地声呐关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [3]
    Coraluppi S. Multistatic Sonar Localization[J]. IEEE Journal of Oceanic Engineering, 2006, 31(4): 964-974.
    [4]
    Coraluppi S, Carthel C. Distributed Tracking in Multistatic Sonar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 1138-1147.
    [5]
    Coraluppi S. Performance Model for Distributed Sonar Tracking[J]. Capabilities of Acoustics in Air-Ground and Maritime Reconnaissance, Target Classification and Identification.RTO-MP-SET-079:37-1-37-11.
    [6]
    Singer R A, Stein J J. An Optimal Tracking Filter for Processing Sensor Data of Imprecisely Origin in Surveil-lance Systems[C]//Proceedings of the 1971 IEEE Conference on Decision and Control. Miami Beach: IEEE, 1971: 171-175.
    [7]
    Singer R A, Sea R G, Housewright K B. Derivation and Evaluation of Improved Tracking Filters for Use in Dense Multi-Target Environments[J]. IEEE Transactions Information Theory, 1974, 20(7): 201-211.
    [8]
    Bar-Shalom Y, Jaffer A G. Adaptive Nonlinear Filtering for Tracking with Measurements of Uncertain[C]//Pro- ceedings of the 11th IEEE Conference on Decision and Control, New Orleans, Louisiana, USA: IEEE, 1972: 243- 247.
    [9]
    Reid D B. An Algorithm for Tracking Multiple Targets[J]. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854.
    [10]
    Coraluppi S, Grimmett D. Multistatic Sonar Tracking[C]// Proceedings of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition Ⅻ, Orlando, FL: SPIE, 2003: 399-410.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(856) PDF Downloads(684) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return