• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
DUAN Jie, LI Hui, CHEN Zi-li, GONG Shi-hua, ZHAO Chao-wen. Online Fault Diagnosis of AUV Sensor Based on RBF and OS-ELM Neural Networks[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 157-165. doi: 10.11993/j.issn.2096-3920.2018.02.010
Citation: DUAN Jie, LI Hui, CHEN Zi-li, GONG Shi-hua, ZHAO Chao-wen. Online Fault Diagnosis of AUV Sensor Based on RBF and OS-ELM Neural Networks[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 157-165. doi: 10.11993/j.issn.2096-3920.2018.02.010

Online Fault Diagnosis of AUV Sensor Based on RBF and OS-ELM Neural Networks

doi: 10.11993/j.issn.2096-3920.2018.02.010
  • Received Date: 2017-06-26
  • Rev Recd Date: 2017-10-01
  • Publish Date: 2018-05-08
  • Sensor is an important component part of an autonomous undersea vehicle(AUV). Real-time and accurate online fault diagnosis of AUV sensors is of great significance to improve the safety of an AUV. This study analyzes the machine learning algorithms, and builds a radial basis function(RBF) neural network-based AUV sensor predictor with high accuracy and real-time performance. Subsequently, the online sequential extreme learning machine(OS-ELM) algorithm is applied to the online sensor fault diagnosis to improve the real time performance and accuracy of the predictor. Two kinds of fault diagnosis models are simulated and compared by using the sea trial data of AUV sensor, and the results show that the prediction accuracy and real-time performance of the OS-ELM neural network predictor with RBF neural network algorithm are higher than that of RBF neural network predictor. This research may provide a reference for the design of on-line fault diagnosis scheme of AUV control system.

     

  • loading
  • [1]
    陈艾琴, 刘乾, 朱大奇. 基于BP神经网络的水下机器人推进器故障辨识算法[J]. 电脑知识与技术, 2009, 5(19): 5214-5216.

    Chen Ai-qin, Liu Qian, Zhu Da-qi. A Fault Identification Algorithm of Thrusters for Unmanned Underwater Vehicles Based on BP Neural Networks[J]. Computer Knowledgeand Technology, 2009, 5(19): 5214-5216.
    [2]
    朱大奇, 陈楚瑶, 颜明重. 基于CA-CMAC的快速传感器故障诊断方法[J]. 电子学报, 2008, 36(8): 1646-1650.

    Zhu Da-qi, Chen Chu-yao, Yan Ming-zhong. Fast Sensor Fault Diagnosis Method Based on CA-CMAC[J]. Acta Electronica Sinica, 2008, 36(8): 1646-1650.
    [3]
    胡暾, 赵哲身, 郑毅. 基于主元分析的传感器故障检测与诊断[J]. 仪表技术, 2005(6): 30-32.

    Hu Tun, Zhao Zhe-shen, Zheng Yi. Fault Detection and Diagnosis for Sensors Based On PAC[J]. Instrumentation Technology, 2005(6): 30-32.
    [4]
    严浙平, 陈涛, 秦政, 等. 灰色动态预测在AUV传感器故障诊断中的应用[J]. 传感技术学, 2008, 21(6): 1002- 1006.

    Yan Zhe-ping, Chen Tao, Qin Zheng, et al. Application of Sensor Fault Diagnosis Based on Grey Dynamic Prediction for AUV[J]. Chinese Journal of Sensors and Actua-tors, 2008, 21(6): 1002-1006.
    [5]
    崔荣鑫, 徐德民, 潘瑛, 等. 基于滑模观测器的AUV传感器故障检测[J]. 弹箭与制导学报, 2004, 24(4): 233- 240.

    Cui Rong-xin, Xu De-ming, Pan Ying, et al. AUV Sensor Fault Detection Based on Sliding Observer[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 24(4): 233- 240.
    [6]
    朱大奇, 胡震. 水下机器人故障诊断与容错控制技术[M]. 北京: 国防工业出版社, 2012.
    [7]
    刘晓琴, 王大志, 杨青. 一种基于BP神经网络的传感器故障诊断方案[J]. 沈阳理工大学学报, 2006, 25(4): 16-19, 46.

    Liu Xiao-qin, Wang Da-zhi, Yang Qing. A Fault Diagnosis Approach to Sensor Based on BP Neural Network[J]. Transactionsof Shenyang Ligong University, 2006, 25(4): 16-19, 46.
    [8]
    邵向潮, 何永强, 蔡鹃, 等. 基于RBF神经网络的温度传感器故障诊断[J]. 吉首大学学报(自然版), 2010, 31(2): 79-82.

    Shao Xiang-chao, He Yong-qiang, Cai Juan, et al. Research on Fault Diagnosis of Temperature Sensor Based on RBF Neural Network[J]. Journal of Jishou University(Natural Science Edition), 2010, 31(2): 79-82.
    [9]
    王玉甲, 张铭均, 金志贤. 水下机器人传感器及推进器状态监测系统[J]. 机械工程学报, 2006, 42(s1): 214-218.

    Wang Yu-jia, Zhang Ming-jun, Jin Zhi-xian. Condition Monitorting System for Sensors and Thrusters of AUV[J]. Chinese Journal of Mechanical Engineering, 2006, 42(s1): 214-218.
    [10]
    陈明. Matlab神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2015.
    [11]
    Moody J, Darken C. Fast Learning in Networks of Locally-tuned Processing Units[J]. Neural Computation, 1989 (1): 281-294.
    [12]
    Liang N Y, Huang G B, Saratchandran P, et al. A Fast and Accurate Online Sequential Learning Algorithm for Feed- forward Networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411-1423.
    [13]
    Huang G B, Zhu Q Y, Siew C K. Extreme Learning Machine: Theory and Application[J]. Neurocomputing, 2006, 70(1): 489-501.
    [14]
    尹刚, 张英堂, 李志宁, 等. 改进在线贯序极限学习机在模式识别中的应用[J]. 计算机工程, 2012, 38(8): 164- 166.

    Yin Gang, Zhang Ying-tang, Li Zhi-ning, et al. Applicati- on of Modified Online Sequential Extreme Learning Machine in Pattern Recognition[J]. Computer Engineering, 2012, 38(8): 164-166.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(933) PDF Downloads(287) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return