• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
ZHANG Yue-qing, CAI Wei-jun, LI Jian-chen, WANG Zhi-jie, PANG Duo. Simulation on Whip Phenomenon of Torpedo during Oblique Water Entry[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 146-151. doi: 10.11993/j.issn.2096-3920.2018.02.008
Citation: ZHANG Yue-qing, CAI Wei-jun, LI Jian-chen, WANG Zhi-jie, PANG Duo. Simulation on Whip Phenomenon of Torpedo during Oblique Water Entry[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 146-151. doi: 10.11993/j.issn.2096-3920.2018.02.008

Simulation on Whip Phenomenon of Torpedo during Oblique Water Entry

doi: 10.11993/j.issn.2096-3920.2018.02.008
  • Received Date: 2017-09-04
  • Rev Recd Date: 2017-11-06
  • Publish Date: 2018-05-08
  • To solve the problem of inaccurate calculation of torpedo’s initial trajectory, the water entry mechanism of a torpedo is analyzed. Based on the advantage of meshless method, finite element method(FEM)/smoothed particle hydrodynamics(SPH) coupling method is used to simulate torpedo’s large attitude motion process during oblique water entry. The correctness of the simulation model is verified by the experimental data. The whip phenomenon of torpedo during oblique water entry is analyzed, and the values of low pressure under different conditions are calculated and verified by theoretical formula. Results show that when a torpedo is entering into water, the area part under the torpedo head is trend to produce low-pressure effect, resulting in large-attitude downward motion and the whip. The low pressure causing the whip phenomenon is significantly affected by the angle of attack. The low-pressure value is larger and the duration of action is longer in the negative attack angle condition, compared with those in the positive attack angle condition. Therefore, in order to more accurately analyze and design the torpedo trajectory during water entry, the effect of the low pressure is necessary to be considered.

     

  • loading
  • [1]
    徐宣志. 鱼雷力学[M]. 北京: 国防工业出版社, 1992.
    [2]
    王永虎, 石秀华. 空投雷弹斜入水初始弹道数值分析[J]. 弹道学报, 2012, 24(2): 92-95.

    Wang Yong-hu, Shi Xiu-hua. Numerical Analysis for Initial Hydro Ballistics of Airborne Missile During Oblique Water Entry Impact[J]. Journal of Ballistics, 2012, 24(2): 92-95.
    [3]
    严忠汉. 鱼雷入水初期水弹道稳定技术分析[J]. 水动力学研究与进展, 1990, 5(3): 117-126.

    Yan Zhong-han. The Technology of Stabilization of Initial Trajectory of Water Entry Torpedoes[J]. Journal of Hydrodynamics, 1990, 5(3): 117-126.
    [4]
    颜开, 史淦君, 薛晓中, 等. 用Mackey方法计算鱼雷带空泡航行时的入水弹道[J]. 弹道学报, 1998, 10(2): 93- 96.

    Yan Kai, Shi Gan-jun, Xue Xiao-zhong, et al. The Water Entry Trajectory Calculation of a Torpedo with Cavity by Use of Mackey Method[J]. Journal of Ballistics, 1998, 10 (2): 93-96.
    [5]
    陈九锡. 三维空间入水弹道测量的新方法[J]. 船舶力学, 2001, 5(2): 5-22.

    Chen jiu-xi. New Method for Measuring Ballistic Parameters Just Using Accelerometers[J]. Journal of Ship Mechanics, 2001, 5(2): 5-22.
    [6]
    徐杏钦. 鱼雷入水段弹道研究[J]. 鱼雷技术, 2004, 12 (4): 29-31.

    Xu Xing-qin. Investigation of Water Entry Trajectory Torpedo[J]. Torpedo Technology, 2004, 12(4): 29-31.
    [7]
    潘光, 吴文辉, 毛昭勇, 等. 高空远程滑翔鱼雷全弹道仿真关键技术[J]. 鱼雷技术, 2009, 17(4): 10-15.

    Pan Guang, Wu Wen-hui, Mao Shao-yong, et al. Key Tec- hnologies about Complete Trajectory Simulation for High Altitude Long Range Gliding Torpedo[J]. Torpedo Technology, 2009, 17(4): 10-15.
    [8]
    程文鑫, 蔡卫军, 杨春武. 鱼雷小角度入水过程仿真[J]. 鱼雷技术, 2014, 22(3): 161-164.

    Cheng Wen-xin, Cai Wei-jun, Yang Chun-wu. Simulation on Small Angle Water Entry Process of Torpedo[J]. Torpedo Technology, 2014, 22(3): 161-164.
    [9]
    朱珠, 袁绪龙, 刘维. 柱体大攻角入水弹道建模与仿真[J]. 火力与指挥控制, 2015, 40(2): 13-23.

    Zhu Zhu, Yuan Xu-long, Liu Wei. On Modeling and Simul- ation of Cylinder Dropping in Water with High Angle of Attack[J]. Fire Control & Command Control, 2015, 40(2): 13- 23.
    [10]
    李永利, 刘安, 冯金富, 等. 航行器小角度入水跳弹过程研究[J]. 兵工学报, 2016, 37(10): 1860-1872.

    Li Yong-li, Liu An, Feng Jin-fu, et al. Research on Ricochet Process of Small Angle Water Entry Vehicle[J]. Acta Armamentarii, 2016, 37(10): 1860-1872.
    [11]
    李佳川, 魏英杰, 王聪, 等. 不同扰动角速度高速射弹入水弹道特性[J]. 哈尔滨工业大学学报, 2017, 49(4): 131-136.

    Li Jia-chuan, Wei Ying-jie, Wang Cong, et al. Water Entry Trajectory Characteristics of High Speed Projectiles with Various Turbulent Angular Velocity[J]. Journal of Harbin Institute of Technology, 2017, 49(4): 131-136.
    [12]
    张岳青, 蔡卫军, 李建辰, 等. FEM/SPH耦合方法在鱼雷入水研究中的应用[J]. 鱼雷技术, 2017, 25(1): 1-6.

    Zhang Yue-qing, Cai Wei-jun, Li Jian-chen, et al. Application of a FEM/SPH Coupling Method to Torpedo Water Entry[J]. Torpedo Technology, 2017, 25(1): 1-6.
    [13]
    严卫生. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1049) PDF Downloads(512) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return