• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
WANG Yong, YANG Yi-xin, MA Yuan-liang. Discussion about the Superdirective Beamforming Theory and Methods of Circular Acoustic Sensor Arrays[J]. Journal of Unmanned Undersea Systems, 2017, 25(新刊4): 297-309. doi: 10.11993/j.issn.2096-3920.2017.04.001
Citation: WANG Yong, YANG Yi-xin, MA Yuan-liang. Discussion about the Superdirective Beamforming Theory and Methods of Circular Acoustic Sensor Arrays[J]. Journal of Unmanned Undersea Systems, 2017, 25(新刊4): 297-309. doi: 10.11993/j.issn.2096-3920.2017.04.001

Discussion about the Superdirective Beamforming Theory and Methods of Circular Acoustic Sensor Arrays

doi: 10.11993/j.issn.2096-3920.2017.04.001
  • Received Date: 2017-09-20
  • Rev Recd Date: 2017-10-16
  • Publish Date: 2017-10-31
  • To solve the contradiction between size and spatial directivity of sensor array due to space limitation of the carrier, such as unmanned undersea system, the supedirective beamforming methods were proposed to provide high directivity for a size-limited sensor array. This paper introduces the research background and history of superdirectivity, and presents the confronted problems and corresponding countermeasures. These superdirective beamforming methods can be classified into two main types, i.e., gain-maximation and beam pattern synthesis. Then, the common supedirective beamforming methods specially for circular acoustic sensor arrays are discussed in detail, and based on the above two main types, they are further categorized into the phase-mode method, the difference-based method, the eigen-beam decomposition and synthesis method, and the eigen-decomposition-based beam pattern synthesis method. The corresponding basic principles, merits and demerits, application ranges, relationship between each other and some related experimental results of these superdirective beamforming methods are analyzed to give a comprehensive presentation of the superdirective beamforming methods for circular acoustic sensor arrays, and to provide guidelines for related research and application.

     

  • loading
  • [1]
    Stojanovic M. High-speed Underwater Acoustic Communications[M]. U.S.: Springer, 2002: 1-35.
    [2]
    Engineering Icons. The Barra Sonobuoy System[EB/OL]. [2017-09-01]. http://engineeringicons.org.au/engineering-icons/australian/barra-sonobuoy-system/index.html.
    [3]
    Thales. Flash Dipping Sonar. [2017-09-01]. https://www.thalesgroup.com/.
    [4]
    Amazon. Amazon Echo. [2017-09-01]. https:// www. amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E.
    [5]
    Schelkunoff S A. A Mathematical Theory of Linear Arrays[J]. Bell System Technology Journal, 2014, 22(1): 80-107.
    [6]
    Uzkov A I. An Approach to the Problem of Optimum Directive Antennae Design[J]. Comptes Rendus (Doklady) de l’ Academie des Sciences de l’ URSS, 1946, 53(1): 35-38.
    [7]
    Pritchard R L. Maximum Directivity Index of a Linear Point Array[J]. Journal of the Acoustical Society of America, 1954, 26(6): 1034-1039.
    [8]
    Capon J. High-Resolution Frequency-Wavenumber Spectrum Analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408- 1418.
    [9]
    Gerzon M A. Maximum Directivity Factor of nth-order Transducers[J]. Journal of the Acoustical Society of America, 1976, 60(1): 278-280.
    [10]
    Cox H, Zeskind R M, Kooij T. Practical Supergain[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, 34(3): 393-398.
    [11]
    Cox H, Zeskind R M, Owen M M. Robust Adaptive Beamforming[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(10): 1365-1376.
    [12]
    Parsons A T. Maximum Directivity Proof for Three-dimensional Arrays[J]. Journal of the Acoustical Society of America, 1987, 82(1): 179-182.
    [13]
    Carlson B. D. Covariance Matrix Estimation Errors and Diagonal Loading in Adaptive Arrays[J]. IEEE Transactions on Aerospace & Electronic Systems, 1988, 24(4): 397-401.
    [14]
    Cox H, Pitre R. Robust DMR and Multi-rate Adaptive Beamforming[C]//U.S.: Conference Record of the Thirty- First Asilomar Conference on Signals, Systems & Computers, 1997: 920-924.
    [15]
    Yan S F, Ma Y L. Robust Supergain Beamforming for Circular Array via Second-order Cone Programming[J]. Applied Acoustics, 2005, 66(9): 1018-1032.
    [16]
    鄢社锋, 马远良, 孙超. 任意几何形状和阵元指向性的传感器阵列优化波束形成方法[J]. 声学学报, 2005, 30 (3): 264-270.

    Yan She-feng, Ma Yuan-liang, Sun Chao. Beampattern Optimization for Sensor Arrays of Arbitrary Geometry and Element Directivity[J]. Acta Acustica, 2005, 30(3): 264-270.
    [17]
    鄢社锋, 马远良. 传感器阵列波束优化设计及应用[M]. 北京: 科学出版社, 2009.
    [18]
    Doclo S, Moonen M. Design of Broadband Beamformers Robust Against Gain and Phase Errors in the Microphone Array Characteristics[J]. IEEE Transactions on Signal Processing, 2003, 51(10): 2511-2526.
    [19]
    Crocco M, Trucco A. The Synthesis of Robust Broadband Beamformers for Equally-spaced Linear Arrays[J]. Journal of the Acoustical Society of America, 2010, 128(2): 691-701.
    [20]
    Doclo S, Moonen M. Superdirective Beamforming Robust Against Microphone Mismatch[J]. IEEE Transactions on Audio Speech & Language Processing, 2007, 15(2): 617-631.
    [21]
    Crocco M, Trucco A. Design of Robust Superdirective Arrays with a Tunable tradeoff between Directivity and Frequency-invariance[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2169-2181.
    [22]
    Chen H, Ser W. Design of Robust Broadband Beamformers with Passband Shaping Characteristics Using Tikhonov Regularization[J]. IEEE Transactions on Audio Speech & Lan- guage Processing, 2009, 17(4): 665-681.
    [23]
    Trucco A, Crocco M. Design of an Optimum Super-directive Beamformer through Generalized Directivity Maximization[J]. IEEE Transactions on Signal Processing, 2014, 62(23): 6118-6129.
    [24]
    Pan C, Chen J, Benesty J. A Multistage Minimum Variance Distortionless Response Beamformer for Noise Reduction[J]. Journal of the Acoustical Society of America, 2015, 137(3): 1377-1388.
    [25]
    Berkun R, Cohen I, Benesty J. Combined Beamformers for Robust Broadband Regularized Superdirective Beamforming[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2015, 23(5): 877-886.
    [26]
    Huang G, Benesty J, Chen J. Superdirective Beamforming based on the Krylov Matrix[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2016, 24(12): 2531-2543.
    [27]
    Wang Y, Yang Y X, He Z Y, et al. A General Superdirectivity Model for Arbitrary Sensor Arrays[J]. Eurasip Journal on Advances in Signal Processing, 2015, 2015(68): 1-16.
    [28]
    D’Spain G, Hodgkiss W, Edmonds G, et al. Initial Analysis of the Data from the Vertical Difar Array[C]//Newport, RI, USA: OCEANS ’92 ’Mastering the Oceans Through Technology’ Proceedings, 1992: 346-351.
    [29]
    Cray B A, Nuttall A. H. A Comparison of Vector-sensing and Scalar-sensing Linear Arrays[R]. Rhode Island: Naval Undersea Warfare Center Division, 1997.
    [30]
    Nehorai A, Paldi E. Acoustic Vector-sensor Array Processing[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2481-2491.
    [31]
    贾志富. 同振球型声压梯度水听器的研究[J]. 应用声学, 1997, 16(3): 20-25.

    Jia Zhi-fu. On Pressure Gradient Hydrophone with Cooscillating Sphere[J]. Applied Acoustics, 1997, 16(3): 20-25.
    [32]
    孙贵青, 李启虎. 声矢量传感器信号处理[J]. 声学学报, 2004, 29(6): 491-498.

    Sun Gui-qing, Li Qi-hu. Acoustic Vector Sensor Signal Processing[J]. Acta Acustica, 2004, 29(6): 491-498
    [33]
    Schmidlin D J. Directionality of Generalized Acoustic Sensors of Arbitrary Order[J]. Journal of the Acoustical Society of America, 2007, 121(6): 3569-3578.
    [34]
    Zou N, Nehorai A. Circular Acoustic Vector-sensor Array for Mode Beamforming[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 3041-3052.
    [35]
    Guo X J, Yang S E, Miron S. Low-frequency Beamforming for a Miniaturized Aperture Three-by-three Uniform Rectangular Array of Acoustic Vector Sensors[J]. Journal of the Acoustical Society of America, 2015, 138(6): 3873-3883.
    [36]
    Wang Y, Yang Y, He Z, et al. Array Gain for a Conformal Acoustic Vector Sensor Array: An Experimental Study[J]. Chinese Physics B, 2016, 25(12): 126-131.
    [37]
    Hans-Elias B D. The Microflown: An Acoustic Particle Velocity Sensor[J]. Aiaa Journal, 2003, 31(3): 91-94.
    [38]
    Gur B. Particle Velocity Gradient Based Acoustic Mode Beamforming for Short Linear Vector Sensor Arrays[J]. Journal of the Acoustical Society of America, 2014, 135 (6): 3463-3473.
    [39]
    Yu S D, Fernández Comesaña D, Carrillo Pousa G, et al. Unidirectional Acoustic Probe Based on the Particle Velocity Gradient[J]. Journal of the Acoustical Society of America, 2016, 139(6): EL179-EL183.
    [40]
    Pan C, Chen J, Benesty J. Performance Study of the MVDR Beamformer as a Function of the Source Incidence Angle[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2014, 22(1): 67-79.
    [41]
    Newman E, Richmond J, Walter C. Superdirective Receiving Arrays[J]. IEEE Transactions on Antennas & Propagation, 1978, 26(5): 629-635.
    [42]
    Zhou Q C, Gao H, Zhang H, et al. Robust Superdirective Beamforming for Hf Circular Receive Antenna Arrays[J]. Progress In Electromagnetics Research, 2013, 136: 665- 679.
    [43]
    鄢社锋, 马远良. 基于二阶锥规划的任意传感器阵列时域恒定束宽波束形成[J]. 声学学报, 2005, 30(4): 309- 316.

    Yan She-feng, Ma Yuan-liang. Broadband Constant Beam-width Beamforming for Arbitrary Sensor Arrays in Time Domain via Second-order Cone Programming[J]. Acta Acustica, 2005, 30(4): 309-316.
    [44]
    Dolph C L, Riblet H J. Discussion on “A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-lobe Level”[J]. Proceedings of the Ire 1947, 35(5): 489-492.
    [45]
    马远良. 任意结构形状传感器阵方向图的最佳化[J]. 中国造船, 1984, 87(4): 78-85.

    Ma Yuan-liang. Pattern Optimisation for Sensor Arrays of Arbitrary Configuration[J]. Shipbuilding of China, 1984, 87 (4): 78-85.
    [46]
    Olen C A, Compton R T, Jr. A Numerical Pattern Synthesis Algorithm for Arrays[J]. IEEE Transactions on Antennas & Propagation, 1990, 38(10): 1666-1676.
    [47]
    Yan S F, Hovem J M. Array Pattern Synthesis with Robustness against Manifold Vectors Uncertainty[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 405-413.
    [48]
    Yan S F, Ma Y L, Hou C H. Optimal Array Pattern Synthesis for Broadband Arrays[J]. Journal of the Acoustical Society of America, 2007, 122(5): 2686-2696.
    [49]
    Davies D E. Circular arrays[M]. London: Handbook of Antenna Design. 1983.
    [50]
    Meyer J. Beamforming for a Circular Microphone Array Mounted on Spherically Shaped Objects[J]. Journal of the Acoustical Society of America, 2001, 109(1): 185-193.
    [51]
    Teutsch H. Modal Array Signal Processing: Principles and Applications of Acoustic Wavefield Decomposition[J]. Lecture Notes in Control and Information Sciences, 2007, 348(1): 60-76.
    [52]
    蒋伟. 小尺度传感器阵列超指向性研究及实现[D]. 西安: 西北工业大学, 2007.
    [53]
    钱琛, 杨益新, 郭国强. 球体表面圆环阵模态域稳健高增益波束形成方法研究[J]. 声学学报, 2010, 35(6): 623- 633.

    Qian Chen, Yang Yi-xin, Guo Guo-qiang. On Robust Supergain Beamforming in Mode Space for a Circular Array Mounted on a Sphere[J]. Acta Acustica, 2010, 35(6): 623- 633.
    [54]
    汪勇, 杨益新. 柱体表面圆环阵稳健高增益波束形成的模态域直接优化方法研究[J]. 声学学报, 2012, 37(3): 308-318.

    Wang Yong, Yang Yi-xin. On Direct Optimization in Mode Space for Robust Supergain Beamforming of Circular Array Mounted on a Cylinder[J]. Acta Acustica, 2012, 37(3): 308- 318.
    [55]
    Rafaely B. Analysis and Design of Spherical Microphone Arrays[J]. IEEE Transactions on Speech & Audio Processing, 2005, 13(1): 135-143.
    [56]
    Parthy A, Jin C, Schaik A V. Measured and Theoretical Performance Comparison of a Broadband Circular Micro-phone Array[J]. International Conference on Audio, 2008, 123(5): 1289-1294.
    [57]
    钱琛. 小尺度声场传感器超指向性研究[D]. 西安: 西北工业大学, 2010.
    [58]
    Parthy A, Epain N, Schaik A V, et al. Comparison of the Measured and Theoretical Performance of a Broadband Circular Microphone Array[J]. Journal of the Acoustical Society of America, 2011, 130(6): 3827-3837.
    [59]
    Tiana-Roig E, Jacobsen F, Grande E F. Beamforming with a Circular Microphone Array for Localization of Environmental Noise Sources[J]. Journal of the Acoustical Society of America, 2010, 128(6): 3535-3542.
    [60]
    Tiana-Roig E, Jacobsen F, Grande E F. Beamforming with a Circular Array of Microphones Mounted on a Rigid Sphere(l)[J]. Journal of the Acoustical Society of America, 2011, 130(3): 1095-1098.
    [61]
    Torres A M, Cobos M, Pueo B, et al. Robust Acoustic Source Localization Based on Modal Beamforming and Time-frequency Processing Using Circular Microphone Arrays[J]. Journal of the Acoustical Society of America, 2012, 132(3): 1511-1520.
    [62]
    Yang D, Zhu Z. Direction-of-arrival Estimation for a Uniform Circular Acoustic Vector-sensor Array Mounted Around a Cylindrical Baffle[J]. Science China Physics Mechanics & Astronomy, 2012, 55(12): 2338-2346.
    [63]
    杨德森, 朱中锐, 时胜国, 等. 声矢量圆阵相位模态域目标方位估计[J]. 声学学报, 2014, 39(1): 19-26.

    Yang De-sen, Zhu Zhong-rui, Shi Sheng-guo, et al. Direction-of-arrival Estimation Based on Phase Modal Space for a Uniform Circular Acoustic Vector-sensor Array[J]. Acta Acustica, 2014, 39(1): 19-26.
    [64]
    Meyer J, Elko G W. Spherical Microphone Arrays for 3d Sound Recording[M]. Berlin: Springer, 2004: 67-89.
    [65]
    Alon D L, Rafaely B. Spatial Aliasing-cancellation for Circular Microphone Arrays[C]//France: The 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA), 2014: 137-141.
    [66]
    马远良. 小尺度水听器基阵能否获得高于常规波束形成器的阵增益[C]//陕西杨凌: 陕西省声学学会首届学术会议, 2002.
    [67]
    McConnell J A, Jensen S C. Forming First-and Second-order Cardioids with Multimode Hydrophones [C]// Boston: OCEANS 2006, 2006: 1-6.
    [68]
    Benesty J, Chen J. Study and Design of Differential Microphone Arrays[M]. Berlin: Springer Topics in Signal Processing, Vol. 6. Berlin: Springer-Verlag, 2013.
    [69]
    Chen J, Benesty J, Pan C. On the Design and Implementation of Linear Differential Microphone Arrays[J]. Journal of the Acoustical Society of America, 2014, 136(6): 3097-3113.
    [70]
    Zhao L, Benesty J, Chen J. Design of Robust Differential Microphone Arrays[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2014, 22(10): 1455-1466.
    [71]
    Benesty J, Chen J, Cohen I. Design of Circular Differential Microphone Arrays[M]. Springer Topics in Signal Processing. Vol. 12. Berlin: Springer-Verlag, 2015.
    [72]
    Huang G, Benesty J, Chen J. On the Design of Frequency-invariant Beampatterns with Uniform Circular Microphone Arrays[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2017, 25(5): 1140-1153.
    [73]
    Huang G, Benesty J, Chen J. Design of Robust Concentric Circular Differential Microphone Arrays[J]. Journal of the Acoustical Society of America, 2017, 141(5): 3236-3249.
    [74]
    Ma Y L, Yang Y X, He Z Y, et al. Theoretical and Practical Solutions for High-order Superdirectivity of Circular Sensor Arrays[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 203-209.
    [75]
    Wang Y, Yang Y X, Ma Y L, et al. Robust High-order Superdirectivity of Circular Sensor Arrays[J]. Journal of the Acoustical Society of America, 2014, 136(4): 1712-1724.
    [76]
    Wang Y, Yang Y X, Ma Y L, et al. High-order Superdirectivity of Circular Sensor Arrays Mounted on Baffles[J]. Acta Acustica United with Acustica, 2016, 102(1): 80-93.
    [77]
    Butler J L, Ehrlich S L. Superdirective Spherical Radiator[J]. Journal of the Acoustical Society of America, 1977, 61(6): 1427-1431.
    [78]
    Wang Y, Yang Y, Ma Y, et al. Superdirective Beamforming for Dual Concentric Circular Hydrophone Arrays[C]// Aberdeen: OCEANS 2017, 2017: 1-5.
    [79]
    Wang Y, Yang Y, Ma Y, et al. Analytical Solutions of Superdirectivity for Circular Arrays with Acoustic Vector Sensors[C]//Skiathos, Greece: UACE2017 4th Underwater Acoustics Conference and Exhibition. 2017: 107-112.
    [80]
    Sydow C. Broadband Beamforming for a Microphone Array[J]. Journal of the Acoustical Society of America, 1994, 96(2): 845-849.
    [81]
    Yang Y X, Sun C, Wan C. Theoretical and Experimental Studies on Broadband Constant Beamwidth Beamforming for Circular Arrays[C]//San Diego, CA: OCEANS 2003, 2003: 1647-1653.
    [82]
    Parra L C. Steerable Frequency-invariant Beamforming for Arbitrary Arrays[J]. Journal of the Acoustical Society of America, 2006, 119(6): 3839-3847.
    [83]
    Tseng C Y, Griffiths L J. A Simple Algorithm to Achieve Desired Patterns for Arbitrary Arrays[J]. IEEE Transactions on Signal Processing, 1992, 40(11): 2737-2746.
    [84]
    Ng B P, Er M H, Kot C. A Flexible Array Synthesis Method Using Quadratic Programming[J]. IEEE Transactions on Antennas & Propagation, 1993, 41(11): 1541-1550.
    [85]
    Wang F, Balakrishnan V, Zhou P Y, et al. Optimal Array Pattern Synthesis Using Semidefinite Programming[J]. IEEE Transactions on Signal Processing, 2003, 51(5): 1172-1183.
    [86]
    Wang Y, Yang Y X, Ma Y L, et al. Broadband Pattern Synthesis for Circular Sensor Arrays[J]. Journal of the Acoustical Society of America, 2014, 136(2): EL153- EL158.
    [87]
    Wang Y, Yang Y X, He Z Y, et al. Theoretical Solutions of Pattern Synthesis for a Circular Array Mounted on Cylinders[C]//Taipei, Taiwan: OCEANS 2014, 2014: 1-6.
    [88]
    Wang Y, Yang Y, He Z, et al. Robust Superdirective Frequency-invariant Beamforming for Circular Sensor Arrays[J]. IEEE Signal Processing Letters, 2017, 24(8): 1193-1197.
    [89]
    Wang Y, Yang Y X, Zhu S H, et al. Experimental Study of Superdirective Frequency-invariant Beamforming for a Circular Hydrophone Array[C]//Monterey: OCEANS 2016 MTS/IEEE, 2016: 1-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1758) PDF Downloads(1113) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return