• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
QIN Yu-feng, QI Zhan-feng, PENG Jia-zhong, SHI Jian, FENG Zhi-tao. Endurance Analysis of Small Long-Range AUV[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 346-354. doi: 10.11993/j.issn.1673-1948.2019.03.017
Citation: QIN Yu-feng, QI Zhan-feng, PENG Jia-zhong, SHI Jian, FENG Zhi-tao. Endurance Analysis of Small Long-Range AUV[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 346-354. doi: 10.11993/j.issn.1673-1948.2019.03.017

Endurance Analysis of Small Long-Range AUV

doi: 10.11993/j.issn.1673-1948.2019.03.017
  • Received Date: 2018-10-13
  • Rev Recd Date: 2018-11-27
  • Publish Date: 2019-06-30
  • To extend the endurance of the small long-range autonomous undersea vehicle(LRAUV), its maximum range under different running modes and with limited energy carried is discussed based on the analysis of energy consumption. The effects of running speed, diving and floating motion, electronic equipment power consumption, and communication frequency on effective range are analyzed. The maximum range of the small LRAUV under different running modes is obtained by combined theoretical analysis, simulation calculation and test, and the theoretical method for improving the effective range of the small LRAUV is also obtained. The results indicate that: 1) the 60 kg-class small LRAUV can achieve a theoretical range of up to 2554 km; 2) the speed has the greatest impact on the effective range; 3) low-speed propulsion is a prerequisite for long range; and 4) the range of the small LRAUV can also be extended by reducing the times of diving and floating, and appropriately lowering the communication frequency.

     

  • loading
  • [1]
     [1] Wynn R B, Huvenne V A I, Le Bas T P, et al. Autonomous Underwater Vehicles(AUVs): Their Past, Present and Future Contributions to the Advancement of Marine Geoscience[J]. Marine Geology, 2014, 352: 451-468.
    [2]
    陈质二, 俞建成, 张艾群. 面向海洋观测的长续航力移动自主观测平台发展现状与展望[J]. 海洋技术学报, 2016, 35(1): 122-130.

    Chen Zhi-er, Yu Jian-cheng, Zhang Ai-qun. Overview on Observation-Oriented Unmanned Marine Vehicles with High Cruising Ability: Development Status and Prospect [J]. Journal of Ocean Technology, 2016, 35(1): 122-130.
    [3]
    秦玉峰. 小型长航程AUV结构设计及动力学分析[D]. 天津: 国家海洋技术中心, 2017.
    [4]
    王晓鸣. 混合驱动自主潜航器续航能力分析[J]. 海洋技术学报, 2016, 35(1): 36-40.

    Wang Xiao-ming. Analysis on the Cruising Ability of the Hybrid Autonomous Underwater Vehicle[J]. Journal of Ocean Technology, 2016, 35(1): 36-40.
    [5]
    McPhail S. Autosub6000: A Deep Diving Long Range AUV[J]. Journal of Bionic Engineering, 2009, 6(1): 55-62.
    [6]
    McPhail S, Furlong M, Huvenne V, et al. Autosub6000: Its First Deepwater Trials and Science Missions[J]. Under-water Technology, 2009, 28(3): 91-98.
    [7]
    Hobson B W, Bellingham J G, Kieft B, et al. Tethysclass Long Range AUVs-extending the Endurance of Propel-ler-driven Cruising AUVs from Days to Weeks[C]//2012 IEEE/OES Autonomous Underwater Vehicles(AUV). Southampton, UK: IEEE, 2012.
    [8]
    Bellingham J G, Zhang Y, Kerwin J E, et al. Efficient Propulsion for the Tethys Long-range Autonomous Underwater Vehicle[C]//2010 IEEE/OES Autonomous Un-derwater Vehicles. Monterey, USA: IEEE, 2011: 1-7.
    [9]
    Crimmins D M, Patty C T, Beliard M A, et al. Longendurance Test Results of the Solar-powered AUV System[C]//Oceans 2006, Boston, USA: IEEE, 2006.
    [10]
    Schultz J. Autonomous Underwater Vehicle(AUV) Propulsion System Analysis and Optimization[D]. Virginia: Virginia Polytechnic Institute and State University, 2009.
    [11]
    Duelley. Autonomous Underwater Vehicle Propulsion Design[D]. Virginia: Virginia Polytechnic Institute and State University, 2010.
    [12]
    秦玉峰, 张选明, 孙秀军, 等. 混合驱动水下滑翔机高效推进螺旋桨设计[J]. 海洋技术学报, 2016, 35(3): 40-45.

    Qin Yu-feng, Zhang Xuan-ming, Sun Xiu-jun, et al. Design of a High-Efficiency Propeller for Hybrid Drive Underwater Gliders[J]. Journal of Ocean Technology, 2016, 35(3): 40-45.
    [13]
    Chen Z, Yu J, Zhang A, et al. Design and Analysis of Folding Propulsion Mechanism for Hybrid-driven Underwater Gliders[J]. Ocean Engineering, 2016, 119: 125-134.
    [14]
    Russ E D, Eriksen C C, Jones C P. Autonomous Buoyan-cy-driven Underwater Gliders[J]. Technology & Applications of Autonomous Underwater Vehicles, 2002: 37-58.
    [15]
    孟令帅, 林扬, 郑荣, 等. 模块化自主水下机器人的机械设计与实现[J]. 机器人, 2016, 38(4): 395-401.

    Meng Ling-shuai, Lin Yang, Zheng Rong, et al. Mechanical Design and Implementation of a Modular Autonomous Underwater Vehicle[J]. Robot, 2016, 38(4): 395-401.
    [16]
    秦玉峰, 孙秀军, 林兴华, 等. 水下滑翔机低速螺旋桨的推进效率[J]. 解放军理工大学学报(自然科学版), 2017, 18(1): 61-67.

    QinYu-feng, Sun Xiu-jun, Lin Xing-hua, et al. Propulsive Efficiency of Low Rotation Propeller for Underwater glider[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2017, 18(1): 61-67.
    [17]
    Pereira A A, Binney J, et al. Risk-aware Path Planning for Autonomous Underwater Vehicles Using Predictive Ocean Models[J]. Journal of Field Robotics, 2013, 30(5): 741-762.
    [18]
    Zhuang Y, Sharma S, Subudhi B, et al. Efficient Colli-sion-free Path Planning for Autonomous Underwater Vehicles in Dynamic Environments with a Hybrid Optimization Algorithm[J]. Ocean Engineering, 2016, 127: 190-199.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(803) PDF Downloads(816) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return