• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
XIA Qing-sheng, LIU Yi-hai. Review of Fusion Recognition Technology for Underwater Target[J]. Journal of Unmanned Undersea Systems, 2013, 21(3): 234-240. doi: 10.11993/j.issn.1673-1948.2013.03.016
Citation: XIA Qing-sheng, LIU Yi-hai. Review of Fusion Recognition Technology for Underwater Target[J]. Journal of Unmanned Undersea Systems, 2013, 21(3): 234-240. doi: 10.11993/j.issn.1673-1948.2013.03.016

Review of Fusion Recognition Technology for Underwater Target

doi: 10.11993/j.issn.1673-1948.2013.03.016
  • Received Date: 2013-03-13
  • Rev Recd Date: 2012-05-06
  • Publish Date: 2013-06-20
  • Information fusion techniques, which can help to effectively reduce or eliminate the measuring uncertainty of distributed sensors′ signal and fuse more comprehensive original vessel radiated signals, have been widely used in vari-ous military and civilian fields, and have attracted more concerns in the world. In this paper, the existing most accepted function models of the fusion systems are summarized, and a three-level (data-feature-decision) underwater automatic target recognition (ATR) system model is proposed. Subsequently, several commonly used fusion algorithms based on the probability theory, the data classification theory, and the artificial intelligence theory are presented, and their advan-tages, disadvantages and application constraints are analyzed. Moreover, the development trend of the underwater target fusion recognition system based on multi-sensor system, the existing problems, and the solutions to these problems are all discussed.

     

  • loading
  • [1]
    杨雷. 弱小目标检测与多传感器数据融合跟踪技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.
    [2]
    Veeravalli V V, Varshney P K. Distributed Inference in Wire-less Sensor Networks[J]. Philosophical Transactions of Royal Society, 2012, 370(1958): 100-117.
    [3]
    王祁. 传感器信息处理及应用[M]. 北京: 科学出版社, 2012.
    [4]
    蒲书缙. 复杂环境下目标识别的智能数据融合技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2006.
    [5]
    Gainet J, Blasch E. Development of Emergent Processing Loops as A System of Systems Concept[C]//Proceedings of AeroSense Conference, 1999: 186-195.
    [6]
    Hall D L, McMullen S A. Mathematical Techniques in Mul-tisensor Data Fusion[M]. USA: Artech House, 2004.
    [7]
    Bedworth M. Probability Moderation for Multilevel Informa-tion Processing[R]. Personal Communication, 1992.
    [8]
    Bedworth M, Obrien J.The Omnibus Model: A New Model of Data Fusion[J].IEEE Aerospace and Electronic Systems Magazine, 2000, 5(4): 30-36.
    [9]
    Paradis S, Roy J. An Architecture and a Facility for the Inte-gration of All Levels of Data Fusion[C]//Proceedings of In-ternational Conference on Information Fusion. France: Paris, 2000: 278-384.
    [10]
    仲崇权, 张立勇, 杨素英, 等. 基于最小二乘原理的多传感器加权融合算法[J]. 仪器仪表学报, 2003, 25(4): 427- 430.

    Zhong Chong-quan, Zhang Li-yong, Yang Su-ying, et al. A Weighted Fusion Algorithm of Multi-sensor Based on the Principle of Least Squares[J]. Chinese Journal of Scientific Instrument, 2003, 25(4): 427-430.
    [11]
    Yue J, Yang R, Huan R. Pixel Level Fusion for Multiple SAR Images Using PCA and Wavelet Transform[C]//Proceedings International Conference on Radar, 2006: 1-4.
    [12]
    Venkatalakshmi K, Shalinie S M. Classification of Multi- spectral Images Using Support Vector Machines Based on PSO and K-means Clustering[C]//Proceedings International Conference on Intelligent Sensing and Information Process-ing, 2005: 127-133.
    [13]
    Dixon S J, Brereton R G.. Comparison of Performance of Five Common Classifiers Represented as Boundary Methods: Euclidean Distance to Centroids, Linear Discriminant Analy-sis, Quadratic Discriminant Analysis, Learning Vector Quan-tization and Support Vector Machines, as Dependent on Data Structure[J]. Chemometrics and Intelligent Laboratory Sys-tems, 2009, 95(1): 1-17.
    [14]
    Luo R C, Su K L. A Review of High-level Multi-sensor Fu-sion: Approaches and Applications[C]//Proceedings Interna-tional Conference on Multisensor Fusion and Integration for Intelligent Systems, 1999: 25-31.
    [15]
    Bracio B R, Horn W, Moller D P F. Sensor Fusion in Bio-medical Systems[C]//Proceedings of the 19th Annual Interna-tional Conference on Engineering in Medicine Biology Soci-ety, 1997: 1387-1390.
    [16]
    Widjaja F, Shee C Y, Latt W T, et al. Kalman Filtering of Ac-celerometer and Electromyography (EMG) Data in Patho-logical Tremor Sensing System[C]//Proceedings of IEEE In-ternational Conference on Robotics and Automation, 2008: 3250- 3255.
    [17]
    Pan H, Mcmichael D, Lendjel M. Inference Algorithms in Bayesian Networks and The Probanet System[J]. Digital Signal Processing, 1998, 8(4): 231-243.
    [18]
    Veeravalli V V, Varshney P K. Distributed Inference in Wire-less Sensor Networks[J]. Philosophical Transactions of Royal Society. 2012, 370(1958): 100-117.
    [19]
    杨风暴, 王肖霞. D-S证据理论的冲突证据合成方法[M]. 北京: 国防工业出版社, 2010.
    [20]
    Murofusi T, Sugeno M. Fuzzy T-conorm Integral with Re-spect to Fuzzy Measures: Generalization of Sugeno Integral and Choquet Integral[J]. Fuzzy sets and Systems, 1991, 42(1): 57-71.
    [21]
    彭力. 信息融合关键技术及其应用[M]. 北京: 冶金工业出版社, 2010.
    [22]
    Smarandache F, Dezert J. Advances and Applications of DSmT for Information Fusion [M]. USA: American Research Press, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1496) PDF Downloads(616) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return