
| Citation: | GAO Xing, HUANG Ke, DUAN Hao. Thermal Dissipation Analysis of High-speed Turbine Impeller Based on Energy Method[J]. Journal of Unmanned Undersea Systems, 2013, 21(3): 206-212. doi: 10.11993/j.issn.1673-1948.2013.03.011 |
| [1] |
Bell J. The Experimental Foundations of Solid Mechanics [M]. New York: Springer-Verlag, 1973.
|
| [2] |
姚磊江, 童小燕, 吕胜利. 金属低周疲劳的能耗耗散与热发射[J]. 机械科学与技术, 2003, 22(5): 709-801.
Yao Lei-jiang, Tong Xiao-yan, Lü Sheng-li. On Energy Dissipation and Thermal Emission of Metals Under Low Cycle Fatigue [J]. Mechanical Science and Technology, 2003, 22(5): 709-801.
|
| [3] |
Hopkinson B, Williams G T. The Elastic Hysteresis of Steel[C]//Proceedingsof Royal Society, 1912: 10-17.
|
| [4] |
Clarebrough L M, Hargreaves M E. Energy Stored During Torsional Oscillation[J]. Mechanics Physical Solid, 1962(10): 235-240.
|
| [5] |
Wong A K, Kirby C. A Hybird Numerical/Experimental Technique for Determine the Heat Dissipated During Low Cycle Fatigue[J]. Engineering Fracture Mechanics, 1990, 37(3): 453-493.
|
| [6] |
Harry R, Joubet F, Gomaa A. Measuring the Actual Endur-ance Limit of One Specimen Using a Non Destructive Method[J]. Journal of Engineering Material Technology, ASME, 1981, 103(1): 71-76.
|
| [7] |
Golos K, Ellyin F. Total Strain Energy Density Theory as a Fatigue Damage Parameter. Advances in Fatigue Science and Technology[C]//Proceedings of NATO Advanced Study In-stitute, Alvor, Portugal, 1989: 849-853.
|
| [8] |
童小燕, 王德俊, 徐灏. 低周疲劳损伤过程的自热温升变化特征[J]. 金属学报, 1991, 27(2): 149-152.
Tong Xiao-yan, Wang De-jun, Xu Hao. Infrared Detection of Self-heating Process During Low Cycle Fatigue Damage[J]. Acta Metallurgica Sinica, 1991, 27(2): 149-152.
|
| [9] |
Koh S K. Fatigue Damage Evaluation of a High Pressure Tube Steel Using Cyclic Strain Energy Density[J]. Interna- tional Journal of Pressure Vessels and Piping, 2002, 79(12): 791-798.
|
| [10] |
童小燕, 王德俊, 徐灏. 疲劳损伤过程的热能耗散分析[J]. 金属学报, 1992, 28(4): 163-169.
Tong Xiao-yan, Wang De-jun, Xu Hao. Heat Energy Dissi- pation in Fatigue Damage Process of Materials[J]. Acta Metallurgica Sinica, 1992, 28(4): 163-169.
|
| [11] |
冯明珲, 吕和祥, 郭宇峰. 粘弹塑性统一本构模型理论[J]. 计算力学学报, 2001, 18(4): 424-434.
Feng Ming-hui, Lü He-xiang , Guo Yu-feng. A Theory of the Visco-elastic-plastic Unifield Constitutive Model and the Comparison with Others[J]. Chinese Journal of Computa- tional Mechanics, 2001, 18 (4): 424-434.
|
| [12] |
丁晓玲, 刘建林, 刘刚. 从宏观和微观来看内能与应变能[J]. 沈阳工程学院学报(自然科学版), 2006, 2(1): 27-28.
Ding Xiao-ling, Liu Jian-lin, Liu Gang. View on Internal Energy and Strain Energy Form Macroscopy and Micro- scopy[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2006, 2(1): 27-28.
|
| [13] |
汤安民, 李智慧. 对弹性力学势能原理等价性提法的商榷[J]. 西安理工大学学报, 2012, 28(3): 326-329.
Tang An-min, Li Zhi-hui. Discussions on the Equivalence of Potential Energy Principle in Elastic Mechanics[J]. Journal of Xi′an University of Technology, 2012, 28(3): 326-329.
|
| [14] |
甘露萍, 黄洪钟, 袁容, 等. 基于总应变能密度的轮盘低周疲劳寿命模型及可靠性研究[J]. 中国科技论文, 2012, 7(8): 616-621.
Gan Lu-ping, Huang Hong-zhong, Yuan Rong, et al. Low Cyclic Fatigue Life Model and Reliability Analysis of Turbine Disks Using Total Strain Energy Density[J]. China Sciencepaper, 2012, 7(8): 616-621.
|
| [15] |
安虎平, 芮执元, 王锐锋, 等. 基于最小能量法的高速切削锯齿状切屑变形分析[J]. 工具技术, 2012, 46(10): 7-10.
An Hu-ping, Rui Zhi-yuan, Wang Rui-feng, et al. Analysis for Deformation of Serrated Chips Formed during High Speed Machining Based on Minimum Energy Consumed[J]. Tool Engineering, 2012, 46(10): 7-10.
|
| [16] |
徐楠, 陈举华. 局部应力应变疲劳的能量方法[J]. 山东大学学报(工学版), 2006, 36(1): 15-18.
Xu Nan, Chen Ju-hua. Energy Method of Local Stress and Strain Fatigue[J]. Journal of Shandong University(Enginee- ring Science), 2006, 36(1): 15-18.
|
| [17] |
刘浩, 赵军, 丁桦. 疲劳过程中生热机理的实验探讨[J]. 实验力学, 2008, 23(1): 1-8.
Liu Hao, Zhao Jun, Ding Hua. Experimental Study on Heat Production Mechanism during Fatigue Process[J]. Journal of Experimental Mechanics, 2008, 23(1): 1-8.
|
| [18] |
童小燕, 姚磊江, 吕胜利. 疲劳能量方法研究回顾[J]. 机械强度, 2004, 26(S): 216-221.
Tong Xiao-yan, Yao Lei-jiang, Lü Sheng-li. Review on Fatigue Energy Theory[J]. Journal of Mechanical Strength, 2004, 26(S): 216-221.
|