• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
GAO Xing, HUANG Ke, DUAN Hao. Thermal Dissipation Analysis of High-speed Turbine Impeller Based on Energy Method[J]. Journal of Unmanned Undersea Systems, 2013, 21(3): 206-212. doi: 10.11993/j.issn.1673-1948.2013.03.011
Citation: GAO Xing, HUANG Ke, DUAN Hao. Thermal Dissipation Analysis of High-speed Turbine Impeller Based on Energy Method[J]. Journal of Unmanned Undersea Systems, 2013, 21(3): 206-212. doi: 10.11993/j.issn.1673-1948.2013.03.011

Thermal Dissipation Analysis of High-speed Turbine Impeller Based on Energy Method

doi: 10.11993/j.issn.1673-1948.2013.03.011
  • Received Date: 2013-03-05
  • Rev Recd Date: 2013-05-28
  • Publish Date: 2013-06-20
  • Operation of high-speed turbine impeller dissipates energy. The variation of temperature is a key parameter for analyzing energy dissipation in its plastic deformation. This paper analyzes the relation between strain energy and heat dissipation of a high-speed turbine impeller on a vacuum test-bed via an established model by using analytical method, and obtains the effects of elastic strain energy and plastic strain energy on heat dissipation of the impeller. The temperature variation observed in experiment validates the computational result, which can provide theoretical reference to systemically analyze thermal dissipation in actual working conditions.

     

  • loading
  • [1]
    Bell J. The Experimental Foundations of Solid Mechanics [M]. New York: Springer-Verlag, 1973.
    [2]
    姚磊江, 童小燕, 吕胜利. 金属低周疲劳的能耗耗散与热发射[J]. 机械科学与技术, 2003, 22(5): 709-801.

    Yao Lei-jiang, Tong Xiao-yan, Lü Sheng-li. On Energy Dissipation and Thermal Emission of Metals Under Low Cycle Fatigue [J]. Mechanical Science and Technology, 2003, 22(5): 709-801.
    [3]
    Hopkinson B, Williams G T. The Elastic Hysteresis of Steel[C]//Proceedingsof Royal Society, 1912: 10-17.
    [4]
    Clarebrough L M, Hargreaves M E. Energy Stored During Torsional Oscillation[J]. Mechanics Physical Solid, 1962(10): 235-240.
    [5]
    Wong A K, Kirby C. A Hybird Numerical/Experimental Technique for Determine the Heat Dissipated During Low Cycle Fatigue[J]. Engineering Fracture Mechanics, 1990, 37(3): 453-493.
    [6]
    Harry R, Joubet F, Gomaa A. Measuring the Actual Endur-ance Limit of One Specimen Using a Non Destructive Method[J]. Journal of Engineering Material Technology, ASME, 1981, 103(1): 71-76.
    [7]
    Golos K, Ellyin F. Total Strain Energy Density Theory as a Fatigue Damage Parameter. Advances in Fatigue Science and Technology[C]//Proceedings of NATO Advanced Study In-stitute, Alvor, Portugal, 1989: 849-853.
    [8]
    童小燕, 王德俊, 徐灏. 低周疲劳损伤过程的自热温升变化特征[J]. 金属学报, 1991, 27(2): 149-152.

    Tong Xiao-yan, Wang De-jun, Xu Hao. Infrared Detection of Self-heating Process During Low Cycle Fatigue Damage[J]. Acta Metallurgica Sinica, 1991, 27(2): 149-152.
    [9]
    Koh S K. Fatigue Damage Evaluation of a High Pressure Tube Steel Using Cyclic Strain Energy Density[J]. Interna- tional Journal of Pressure Vessels and Piping, 2002, 79(12): 791-798.
    [10]
    童小燕, 王德俊, 徐灏. 疲劳损伤过程的热能耗散分析[J]. 金属学报, 1992, 28(4): 163-169.

    Tong Xiao-yan, Wang De-jun, Xu Hao. Heat Energy Dissi- pation in Fatigue Damage Process of Materials[J]. Acta Metallurgica Sinica, 1992, 28(4): 163-169.
    [11]
    冯明珲, 吕和祥, 郭宇峰. 粘弹塑性统一本构模型理论[J]. 计算力学学报, 2001, 18(4): 424-434.

    Feng Ming-hui, Lü He-xiang , Guo Yu-feng. A Theory of the Visco-elastic-plastic Unifield Constitutive Model and the Comparison with Others[J]. Chinese Journal of Computa- tional Mechanics, 2001, 18 (4): 424-434.
    [12]
    丁晓玲, 刘建林, 刘刚. 从宏观和微观来看内能与应变能[J]. 沈阳工程学院学报(自然科学版), 2006, 2(1): 27-28.

    Ding Xiao-ling, Liu Jian-lin, Liu Gang. View on Internal Energy and Strain Energy Form Macroscopy and Micro- scopy[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2006, 2(1): 27-28.
    [13]
    汤安民, 李智慧. 对弹性力学势能原理等价性提法的商榷[J]. 西安理工大学学报, 2012, 28(3): 326-329.

    Tang An-min, Li Zhi-hui. Discussions on the Equivalence of Potential Energy Principle in Elastic Mechanics[J]. Journal of Xi′an University of Technology, 2012, 28(3): 326-329.
    [14]
    甘露萍, 黄洪钟, 袁容, 等. 基于总应变能密度的轮盘低周疲劳寿命模型及可靠性研究[J]. 中国科技论文, 2012, 7(8): 616-621.

    Gan Lu-ping, Huang Hong-zhong, Yuan Rong, et al. Low Cyclic Fatigue Life Model and Reliability Analysis of Turbine Disks Using Total Strain Energy Density[J]. China Sciencepaper, 2012, 7(8): 616-621.
    [15]
    安虎平, 芮执元, 王锐锋, 等. 基于最小能量法的高速切削锯齿状切屑变形分析[J]. 工具技术, 2012, 46(10): 7-10.

    An Hu-ping, Rui Zhi-yuan, Wang Rui-feng, et al. Analysis for Deformation of Serrated Chips Formed during High Speed Machining Based on Minimum Energy Consumed[J]. Tool Engineering, 2012, 46(10): 7-10.
    [16]
    徐楠, 陈举华. 局部应力应变疲劳的能量方法[J]. 山东大学学报(工学版), 2006, 36(1): 15-18.

    Xu Nan, Chen Ju-hua. Energy Method of Local Stress and Strain Fatigue[J]. Journal of Shandong University(Enginee- ring Science), 2006, 36(1): 15-18.
    [17]
    刘浩, 赵军, 丁桦. 疲劳过程中生热机理的实验探讨[J]. 实验力学, 2008, 23(1): 1-8.

    Liu Hao, Zhao Jun, Ding Hua. Experimental Study on Heat Production Mechanism during Fatigue Process[J]. Journal of Experimental Mechanics, 2008, 23(1): 1-8.
    [18]
    童小燕, 姚磊江, 吕胜利. 疲劳能量方法研究回顾[J]. 机械强度, 2004, 26(S): 216-221.

    Tong Xiao-yan, Yao Lei-jiang, Lü Sheng-li. Review on Fatigue Energy Theory[J]. Journal of Mechanical Strength, 2004, 26(S): 216-221.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(955) PDF Downloads(511) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return