• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
CHEN Yu-feng, HUANG Jian-guo, SU Jian-jun. High Resolution Direction-of-Arrive Estimation Based on Sparse Reconstruction and Compressive Sensing Beamforming[J]. Journal of Unmanned Undersea Systems, 2013, 21(2): 110-114. doi: 10.11993/j.issn.1673-1948.2013.02.007
Citation: CHEN Yu-feng, HUANG Jian-guo, SU Jian-jun. High Resolution Direction-of-Arrive Estimation Based on Sparse Reconstruction and Compressive Sensing Beamforming[J]. Journal of Unmanned Undersea Systems, 2013, 21(2): 110-114. doi: 10.11993/j.issn.1673-1948.2013.02.007

High Resolution Direction-of-Arrive Estimation Based on Sparse Reconstruction and Compressive Sensing Beamforming

doi: 10.11993/j.issn.1673-1948.2013.02.007
  • Received Date: 2012-05-12
  • Rev Recd Date: 2012-06-28
  • Publish Date: 2013-04-20
  • A novel compression perception model is established by making use of the spatial sparsity. A random com-pression matrix is constructed by designing a new compressive sampling way with compressive sensing(CS) theory. And another compression matrix is obtained by applying approximate QR decomposition to Gaussian random matrix in order to get a better restricted isometry property(RIP) constant. Singular value decomposition(SVD) is adopted on the data matrix to extract signal subspace for getting low dimensional form of receiving data matrix. Two different kinds of methods for DOA estimation are proposed based on the new compression matrices. One is for CS recovery, i.e. QR sin-gular value decomposition multi-vectors FOCal undetermined system solve(QR-SVD-MFOCUSS); the other is for CS beamforming, i.e. random singular value decomposition compressive sensing beamforming(RSVD-CSB) and QR singu-lar value decomposition compressive sensing beamforming(QRSVD-CSB). Simulation results show that, compared to the multi-vectors FOCal undetermined system solver(MFOCUSS) algorithms, QR-SVD-MFOCUSS is suitable for low signal-to-noise ratio(SNR) condition with significant reduction of computational burden; and compared to the minimum variance distortionless response(MVDR) algorithms and the CS beamforming algorithms, the proposed method pos-sesses higher angular resolution, lower root mean square error(RMSE), better estimation performance, and so on.

     

  • loading
  • [1]
    Krim H, Viberg H. Two Decades of Array Signal Processing Research: the Parametric Approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
    [2]
    Stoica P, Moses R. Introduction to Spectral Analysis[M]. 2th ed. Upper Saddle River. NJ: Prentice-Hall, 2004.
    [3]
    Capon J. High-Resolution Frequency-Wave number Spectrum Analysis[J]. Proceeding of the IEEE, 1969, 57(10): 1110-1125.
    [4]
    Schmit R. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Transaction on Antennas and Propagation, 1986, 34(3): 276-280.
    [5]
    Donoho D. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [6]
    Candes E, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly in Complete Fre-quency Information[J]. IEEE Transactions On Information Theory, 2006, 52(2): 489-509.
    [7]
    Malioutov D, ?etin M, Willsky S A. A Sparse Signal Reconstru- ction Perspective for Source Localization with Sensor Arrays [J]. IEEE Transactions Signal Processing, 2005, 53(8): 3010-3022.
    [8]
    Gurbuz A, Cevher V, McClellan J. Compressive Beamforming Method[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 2008: 2617-2620.
    [9]
    Cevher V, Gurbuz A, McClellan J, et al. Compressive Wire-less Arrays for Bearing Estimation[C]//IEEE International Con-ference on Acoustics Speech and Signal Processing, 2008: 2497-2500.
    [10]
    Ji S, Xue Y, Carin L. Bayesian Compressive Sensing[J]. IEEE Transactions Signal Processing, 2008, 56(6): 2346-2356.
    [11]
    Sun L, Wang H L. Direction-of-Arrive Estimation Based on Modified Bayesian Compressive Sensing Method[C]//Proceed-ing on WCSP, 2011: 1-4.
    [12]
    Candes E J, Wakin M B. An Introduction to Compressive Sam-pling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
    [13]
    Szarek S. Condition Numbers of Random Matrices[J]. Jou- rnal of Complexity, 1991, 7(2): 131-149.
    [14]
    Cand S E, Tao T. Decoding by Linear Programming[J]. IEEE Transactions on Information Theory, 2004, 51(12): 4203- 4215.
    [15]
    Catter S F, Rao B D, Engan K, et al. Sparse Solution to Linear Inverse Problems with Multiple Measurement Vertors[J]. IEEE Transaction on Signal Processing, 2005, 53(7): 2477-2488.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1696) PDF Downloads(814) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return