• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
SONG Bao-wei, MENG Xiang-yao. Maneuverability Analysis of a Hybrid Power Underwater Glider[J]. Journal of Unmanned Undersea Systems, 2012, 20(5): 326-330. doi: 10.11993/j.issn.1673-1948.2012.05.002
Citation: SONG Bao-wei, MENG Xiang-yao. Maneuverability Analysis of a Hybrid Power Underwater Glider[J]. Journal of Unmanned Undersea Systems, 2012, 20(5): 326-330. doi: 10.11993/j.issn.1673-1948.2012.05.002

Maneuverability Analysis of a Hybrid Power Underwater Glider

doi: 10.11993/j.issn.1673-1948.2012.05.002
  • Received Date: 2012-02-08
  • Rev Recd Date: 2012-03-24
  • Publish Date: 2012-10-20
  • Hybrid power underwater glider is a new kind of underwater glider equipped with rudders and propeller system. To validate its performance, the maneuverability under different working conditions in the ocean environment was investigated. A mixed working mode was proposed for a hybrid power underwater glider to improve its navigation capability, i.e. adjusting the center of gravity when the glider is powered, and operating rudders when it is gliding without power. Spatial motion equations were established according to the momentum theorem and the moment of momentum theorem, and a mathematical model of ocean current was constructed. Then different working conditions were simulated numerically. The results show that satisfactory maneuverability and stability of the transition between unpowered gliding and powered propulsion are obtained, but deviation due to ocean current occurs during unpowered gliding period; and the proposed mixed working mode is feasible.

     

  • loading
  • [1]
    Sherman J, Davis R E, Owens W B, et al. The Autonomous Underwater Glider “Spray”[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 437-446.
    [2]
    Rudnick D, Davis R, Ohman M, et al. The underwater glider Spray: Observations around the World[R]. Ocean Observations, 2009.
    [3]
    Mahmoudian N, Geisbert J, Woolsey C. Approximate Analytical Turning Conditions for Underwater Gliders: Implications for Motion Control and Path Planning[J]. IEEE Journal of Oceanic Engineering, 2010, 35(1): 131-143.
    [4]
    俞建成, 张奇峰, 吴利红, 等. 水下滑翔机器人系统研究[J]. 海洋技术, 2006, 25(1): 6-10.

    Yu Jian-cheng, Zhang Qi-feng, Wu Li-hong, et al. Research Progress in Underwater Gliders[J]. Ocean Technology, 2006, 25(1): 6-10.
    [5]
    Bachmayer R, Leonardy N E, Gravery J, et al. Underwater Gliders: Recent Developments and Future Applications [C]//IEEE International Symposium on Underwater Technology(UT′04), Tapei, Taiwan, 2004:195-200.
    [6]
    Jenkins S, Humphreys D, Sherman J, et al. Underwater Glider System Study[R]. USA: Office of Naval Research, 2003.
    [7]
    王晓鸣. 混合驱动水下自航行器动力学行为与控制策略研究[D]. 天津: 天津大学, 2009.
    [8]
    武建国. 混合驱动水下滑翔器系统设计与性能分析[D]. 天津: 天津大学, 2010.
    [9]
    武建国, 陈超英, 王树新, 等. 混合驱动水下滑翔器滑翔状态机翼水动力特性[J]. 天津大学学报, 2010, 43(1): 84-89.

    Wu Jian-guo, Chen Chao-ying, Wang Shu-xin, et al. Hydrodynamic Characteristics of the Wings of Hybrid- Driven[J]. Journal of Tianjin University, 2010, 43(1): 84-89.
    [10]
    严卫生. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 2005.
    [11]
    Du X X, Song B W, Pan G. Dynamics and Simulation of Underwater Glide Vehicle[C]//2010 International Conference on Digital Manufacturing & Automation, 2010.
    [12]
    Hussain N A A, Arshad M R, Mohd-Mokhtar R. Underwater Glider Modelling and Analysis for Net Buoyancy, Depth and Pitch Angle Control[J]. Ocean Engineering, 2011, 38(16): 1782-1791.
    [13]
    张宇文. 鱼雷外形设计[M]. 西安: 西北工业大学出版社, 1998.
    [14]
    胡仞与. 水下滑翔机垂直面运动研究[D]. 上海: 上海交通大学, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1468) PDF Downloads(558) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return