• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
TIAN Xue-bing, GU Jian-nong, ZHANG Zhi-hong, WANG Chong. Effect of Ship Speed on Bubble Wake Geometry Characters[J]. Journal of Unmanned Undersea Systems, 2010, 18(4): 268-271. doi: 10.11993/j.issn.1673-1948.2010.04.007
Citation: TIAN Xue-bing, GU Jian-nong, ZHANG Zhi-hong, WANG Chong. Effect of Ship Speed on Bubble Wake Geometry Characters[J]. Journal of Unmanned Undersea Systems, 2010, 18(4): 268-271. doi: 10.11993/j.issn.1673-1948.2010.04.007

Effect of Ship Speed on Bubble Wake Geometry Characters

doi: 10.11993/j.issn.1673-1948.2010.04.007
  • Received Date: 2009-09-29
  • Rev Recd Date: 2010-03-16
  • Publish Date: 2010-08-30
  • In order to understand the effect of ship speed on bubble wake geometry characters, explore the effect law of different scale bubbles on wake, and provide theoretical basis for acoustic detection of ship bubble wake and torpedo wake homing, this study adopts parabolic Reynolds-averaged Navier-Stokes ( PRaNS) equations, the bubble transport equation and the k-ε turbulence model are used to estimate the bubble number density distribution in ship’s far field wakes, numerically simulates the ship bubble wake geometry characters under different speeds for two typical ships, and the results agree well with the experiments. It shows that ship speed has little effect on bubble wake geometry distribution, but has significant effect on bubble number density in ship wakes. The faster the speed of ship, the higher the bubble number density in the ship wakes with same wake age, and the clearer the wake character. The bubbles with 10 μm radius have the largest elevation, the bubbles with 52 μm radius have the smallest elevation, and the bubbles with radius between 30~ 50 μm live longest. So the wake detection should be focused on the bubbles with radius between 30~ 50 μm.

     

  • loading
  • [1]
    Cervenka, Pter O. Thermal Macrowake of Surface Ship[R]. AD-A194126, David Taylor Naval Ship R&D Center, 1988.
    [2]
    Gasparovic R F. Observation of Ship Wakes from Space[A]. AIAA-92-1354[C],1992.
    [3]
    王宏, 韩明连, 陆达人. 舰船声尾流自导鱼雷及其防御技术[J]. 声学技术. 2007, 26(2): 193-198.Wang Hong, Han Ming-lian, Lu Da-ren. Ship Wake Guided Torpedo and the Defense Technique[J]. Journal of Technical Acoustics. 2007, 26(2): 193-198.
    [4]
    Miner EW, Griffin O M, Skop R A. Near-surface bubble motions in sea water[R] . NRL-MR-5756,1986.
    [5]
    顾建农, 张志宏, 张晓晖. 舰船远场尾流气泡分布特性的数值模拟[J] . 光子学报, 2007, 36 (8) : 1504-1509. Gu Jian-nong, Zhang Zhi-hong, Zhang Xiao-hui. Numerical Simulation of Bubble Distribution Characters in Ships’ Far Field Wakes[J] . Jounal of Acta Photonic Sinica. 2007, 36(8): 1504-1509.
    [6]
    Stewart M B, Morrison F A. Droplet Dynamics in Creeping Flow s [J]. Journal of Applied Mechanics Transactions of The ASME. 1981, 48: 224-228.
    [7]
    盛振邦, 刘应中. 船舶原理[M]. 上海: 上海交通大学出版社, 2003.
    [8]
    高江, 张静远, 杨立. 舰船气泡尾流特性研究现状[J] . 舰船科学技术, 2008, 30( 4): 27-32. Gao Jiang, Zhang Jing-yuan, Yang Li. The Present Situation of Research on Ship Wake Characteristic[J] . Journal of Ship Science and Techonlogy. 2008, 30( 4 ) : 27-32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1624) PDF Downloads(634) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return