• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
WANG Xue-ping, LI fun, ZHANG Fu-bin. Modeling and identifying of Fiber Optic Gyro Random Drift Data Based on Time Series Analysis Method[J]. Journal of Unmanned Undersea Systems, 2007, 15(4): 034-37. doi: 10.11993/j.issn.1673-1948.2007.04.009
Citation: WANG Xue-ping, LI fun, ZHANG Fu-bin. Modeling and identifying of Fiber Optic Gyro Random Drift Data Based on Time Series Analysis Method[J]. Journal of Unmanned Undersea Systems, 2007, 15(4): 034-37. doi: 10.11993/j.issn.1673-1948.2007.04.009

Modeling and identifying of Fiber Optic Gyro Random Drift Data Based on Time Series Analysis Method

doi: 10.11993/j.issn.1673-1948.2007.04.009
  • Received Date: 2006-03-23
  • Rev Recd Date: 2007-06-14
  • Publish Date: 2007-08-30
  • In order to effectively and quickly identify the parameters of random drifts (startup, slow and fleet) of fiber optic gyro( FOG) , the random drift of FOG is modeled as a equation of state with unknown model parameters (correlation coefficient of slow drift) , the unknown model parameters and white noise covariance of slow and fleet drifts are identified based on the time series analysis , and the coupling among three items of the random drift is computed with Kalman filter/ smoother. The real data of random drift of FOG is identified with the model to verify its applicability , and the result suggests that this method accurately compute all of the random drifts and the parameters of FOG. The present method could be used for revising navigation error of FOG as it works alone or in combination with other equipment.

     

  • loading
  • [1]
    邓自立.自校正滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [2]
    邓自立.最优估计理论及其应用[M]. 哈尔滨:哈尔滨工业大学出版社,2005.
    [3]
    秦永元,张洪锁,汪叔华,等.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.
    [4]
    王振龙.时间序列分析[M].北京中国统计出版社,2002.
    [5]
    李言俊,张科.系统辨识理论及应用[M].北京:国防工业出版社,2003.
    [6]
    喊荣春,崔平远.陀螺随机漂移时间序列建模方法研究[J].系统仿真学报,2005,17(8):1845-1847.
    [7]
    阙志宏.线性系统理论[M].西安:西北工业大学出版社,1994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2100) PDF Downloads(864) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return