• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鱼类叉状尾鳍效率转捩点水动力性能研究

熊仲营 刘越尧

熊仲营, 刘越尧. 鱼类叉状尾鳍效率转捩点水动力性能研究[J]. 水下无人系统学报, 2024, 32(1): 1-10 doi: 10.11993/j.issn.2096-3920.2023-0066
引用本文: 熊仲营, 刘越尧. 鱼类叉状尾鳍效率转捩点水动力性能研究[J]. 水下无人系统学报, 2024, 32(1): 1-10 doi: 10.11993/j.issn.2096-3920.2023-0066
XIONG Zhongying, LIU Yueyao. Study on the hydrodynamic performance of the efficiency transition point of forked caudal fins[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0066
Citation: XIONG Zhongying, LIU Yueyao. Study on the hydrodynamic performance of the efficiency transition point of forked caudal fins[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0066

鱼类叉状尾鳍效率转捩点水动力性能研究

doi: 10.11993/j.issn.2096-3920.2023-0066
基金项目: 江苏省高层次创新创业人才引进计划(JSSCBS20211001); 江苏科技大学科研启动基金项目(1012932009).
详细信息
    作者简介:

    熊仲营(1985-), 男, 博士, 硕士生导师, 研究方向为流动控制, 仿生设计、多目标优化设计等

  • 中图分类号: P731.2

Study on the hydrodynamic performance of the efficiency transition point of forked caudal fins

  • 摘要: 鲔科鱼类具有较高的游动速度和游动效率, 因此成为了仿生机器鱼的理想生物原型。为了研究鲔科鱼类叉状尾鳍效率转捩点的水动力特征, 针对推力和功耗的源项进行重点分析。尾鳍模型采用了相同的表面面积、展弦比和叉长。为了统一尾鳍形状的尺度, 采用扫掠角用于表征不同的叉状尾鳍平面结构。研究发现鲔科鱼类尾鳍扫掠角的增加弱化了尾鳍的有效面积, 导致了尾鳍摆动时推动流体向下游运动而受到的反作用力降低, 因此尾鳍的推进能力也会随之衰退。另外, 扫掠角的增加也引起了前缘涡强度的增加和前缘涡的发展, 从而造成了更大的涡增推力。然而, 过分增加扫掠角尽管存在功耗下降的优势, 但也引起推力和水动力效率的下降, 特别是对于高斯特劳哈尔数的情况。通过对推力的源项进行分析发现扫掠角对附加质量力和涡增推力存在相反的作用机制。

     

  • 图  1  尾鳍模型和扫掠角的定义

    Figure  1.  The shape of the three caudal fin models and the definition of the sweep angle

    图  2  平均推力系数和效率相对于单元数的变化曲线(St=0.25)

    Figure  2.  Variation curves of average thrust coefficient and efficiency relative to the number of units (St=0.25)

    图  3  2种网格尺度下的尾迹涡结构对比

    Figure  3.  Comparison of wake vortex structures at two grid scales

    图  4  3种模型的推进效率(St=0.2~0.3)

    Figure  4.  Propulsion efficiency of three models with St numbers in the range of 0.2-0.3

    图  5  3种模型的时均推力(St=0.2~0.3)

    Figure  5.  Time-averaged thrust of the three models with St numbers in the range of 0.2-0.3

    图  6  3种模型的时均功率(St=0.2~0.3)

    Figure  6.  Time-averaged power of the three models with St numbers in the range of 0.2-0.3

    图  7  推力相对于S×Sr2的关系(St=0.2~0.3)

    Figure  7.  Thrust as a function of S×Sr2 with St numbers in the range of 0.2-0.3

    图  8  功率相对于S×Sr3的关系(St=0.2~0.3)

    Figure  8.  Power as a function of S×Sr3 with St numbers in the range of 0.2-0.3

    图  9  3种模型在3 s时的能量消耗等值面图(St=0.3)

    Figure  9.  Energy consumption contour maps of three models at 3 s

    图  10  3种模型尾迹流向方向速度的瞬态等值面图(St=0.25)

    Figure  10.  Transient contours of wake flow direction velocity for three models at St=0.25

    图  11  3种模型在3.16 s、3.28 s和3.48 s的表面压力分布(St=0.25)

    Figure  11.  Pressure contours of the three models at 3.16 s, 3.28 s and 3.48 s at St=0.25

    图  12  3种模型在3.16 s、3.28 s和3.48 s的表面压力分布(St=0.2)

    Figure  12.  Pressure contours of the three models at 3.16 s, 3.28 s and 3.48 s at St=0.2

    表  1  3种模型的几何参数

    Table  1.   Geometric parameters of the three models

    模型rmax/mARθ/(º)S /m2Sr2Sr3
    10.100 05.482457.299×10−30.071 80.047 5
    20.073 45.48236.37.297×10−30.077 70.051 8
    30.126 75.48251.77.297×10−30.068 90.045 9
    下载: 导出CSV
  • [1] Zhu D, Zhang C, Liu P, et al. Comparison of the morphology, structures and mechanical properties of teleost fish scales collected from New Zealand[J]. Journal of Bionic Engineering, 2019, 16(2): 328-336. doi: 10.1007/s42235-019-0028-1
    [2] Salazar R, Fuentes V, Abdelkefi A. Classification of biological and bioinspired aquatic systems: A review[J]. Ocean Engineering, 2018, 148: 75-114. doi: 10.1016/j.oceaneng.2017.11.012
    [3] Yu, J Z, Wang M, Dong H, et al. Motion control and motion coordination of bionic robotic fish: A review[J]. Journal of Bionic Engineering, 2018, 15(4): 579-598. doi: 10.1007/s42235-018-0048-2
    [4] Park J W, Ryu J, Sung H J. Effects of the shape of an inverted flag on its flapping dynamics[J]. Physics of Fluids, 2019, 31(2): 021904. doi: 10.1063/1.5079579
    [5] Han J, Zhang Y, Chen G. Effects of individual horizontal distance on the three-dimensional bionic flapping multi-wings in different schooling configurations[J]. Physics of Fluids, 2019, 31(4): 041903. doi: 10.1063/1.5087624
    [6] Webb P W. Simple physical principles and vertebrate aquatic locomotion[J]. American Zoologist, 1988, 28(2): 709-725. doi: 10.1093/icb/28.2.709
    [7] Low K H, Chong C W. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin[J]. Bioinspiration & Biomimetics, 2010, 5(4): 046002.
    [8] Geder J D, Ramamurti R, Dan E, et al. Development of a robotic fin for hydrodynamic propulsion and aerodynamic control[C]//2014 Oceans-St. St. John’s, N L, Canada, 2014: 1-7.
    [9] Borazjani I, Daghooghi M. The fish tail motion forms an attached leading edge vortex[J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1756): 20122071. doi: 10.1098/rspb.2012.2071
    [10] Krishnadas A, Ravichandran S, Rajagopal P. Analysis of biomimetic caudal fin shapes for optimal propulsive efficiency[J]. Ocean Engineering, 2018, 153: 132-142. doi: 10.1016/j.oceaneng.2018.01.082
    [11] Xiong Z Y, Liu X M. Numerical investigation on evolutionary characteristics of the leading-edge vortex induced by flapping caudal fin[J]. Physics of Fluids, 2019, 31(12): 125117. doi: 10.1063/1.5128701
    [12] Feng Y K, Su Y M, Liu H X, et al. The effects of caudal fin deformation on the hydrodynamics of thunniform swimming under self-propulsion[J]. Journal of Hydrodynamics, 2020, 32(6): 16.
    [13] Matta A, Pendar H, Battaglia F, et al. Impact of caudal fin shape on thrust production of a thunniform swimmer[J]. Journal of Bionic Engineering, 2020, 17(2): 254-269. doi: 10.1007/s42235-020-0020-9
    [14] Liu P, Wang S, Liu R, et al. Effects of St and Re on propulsive performance of bionic oscillating caudal fin[J]. Ocean Engineering, 2020, 217(52): 107933.
    [15] Feng Y K, Liu H X, Su Y Y, et al. Numerical study on the hydrodynamics of C-turn maneuvering of a tuna-like fish body under self-propulsion[J]. Journal of Fluids and Structures, 2020, 94(18): 102954.
    [16] Zhang L, Chang X, Duan X, et al. Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems[J]. Computers & Fluids, 2012, 62: 45-63.
    [17] Seo J H, Mittal R. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations[J]. Journal of Computational Physics, 2011, 230(19): 7347-7363. doi: 10.1016/j.jcp.2011.06.003
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 修回日期:  2023-06-22
  • 录用日期:  2023-07-11
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回
    服务号
    订阅号