• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于高速水下航行器的低比转速轴流推进泵设计方法

张子若 罗凯 秦侃

张子若, 罗凯, 秦侃. 适用于高速水下航行器的低比转速轴流推进泵设计方法[J]. 水下无人系统学报, 2024, 32(1): 1-9 doi: 10.11993/j.issn.2096-3920.2023-0036
引用本文: 张子若, 罗凯, 秦侃. 适用于高速水下航行器的低比转速轴流推进泵设计方法[J]. 水下无人系统学报, 2024, 32(1): 1-9 doi: 10.11993/j.issn.2096-3920.2023-0036
ZHANG Ziruo, LUO Kai, Qin Kan. Design method for low specific speed axial propulsion pump for high-speed underwater vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0036
Citation: ZHANG Ziruo, LUO Kai, Qin Kan. Design method for low specific speed axial propulsion pump for high-speed underwater vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0036

适用于高速水下航行器的低比转速轴流推进泵设计方法

doi: 10.11993/j.issn.2096-3920.2023-0036
详细信息
    作者简介:

    张子若(1999-), 女, 在读硕士, 主要研究方向为流体机械

  • 中图分类号: TK05; TH312

Design method for low specific speed axial propulsion pump for high-speed underwater vehicles

  • 摘要: 对于水下航行器轴流泵喷水推进系统, 现有的升力法设计的高比转速轴流泵无法满足在浅水高速工况下正常工作的需求, 为解决这一问题, 提出一种针对低比转速轴流泵的设计方法。考虑所选NACA66a=0.8翼型的叶栅特性, 通过改变攻角、升力系数等参数的设计关系建立适用于高航速工况的轴流泵模型, 并运用SST-湍流模型和多重参考系模型对设计泵的流场运动情况进行仿真。结果表明: 设计工况下, 设计泵的扬程和水力效率与设计值误差均控制在8%以内, 同时测试设计泵在不同水深下的抗空化性能, 进一步探索设计泵可以工作的最小航深。

     

  • 图  1  实验泵模型

    Figure  1.  Model of experimental pump

    图  2  实验泵网格划分

    Figure  2.  mesh of experimental pump

    图  3  实验泵数值仿真计算域边界条件设置

    Figure  3.  Numerical simulation of experimental pump calculation of domain boundary condition settings

    图  4  验证泵实验数据与仿真数据对比

    Figure  4.  Comparison of experimental data and simulation data of the verification pump

    图  5  内流道结构示意图

    Figure  5.  Schematic diagram of internal flow channel structure

    图  6  设计泵进出口速度三角形

    Figure  6.  Design pump inlet and outlet velocity triangle

    图  7  泵叶轮设计流程图

    Figure  7.  Flow chart of pump impeller design process

    图  8  泵叶轮叶片表面空化面积图

    Figure  8.  Diagram of Pump impeller blade surface cavitation area

    图  9  泵导叶设计流程

    Figure  9.  Flow chart of pump guide vane design process

    图  10  设计泵模型及网格划分示意图

    Figure  10.  Model and mesh of designed pump

    图  11  叶轮在30 m、40 m、50 m水深下汽相体积分数及静压分布图

    Figure  11.  Vapor phase volume fraction and static pressure distribution of impeller at water depths of 30 m, 40 m, 50 m

    表  1  实验泵在标况下的网格无关性验证

    Table  1.   Verification of grid independence of experimental pumps understandard conditions

    工况类型网格数目仿真扬程/m
    Q/Qd=1$ 1\times {10}^{6} $2.96
    $ 2.7\times {10}^{6} $2.91
    $ 4.5\times {10}^{6} $3.06
    下载: 导出CSV

    表  2  常规升力法叶轮各截面部分设计参数

    Table  2.   Design parameters of each section of the conventional lift impeller

    参数r1r2r3r4r5r6r7r8r9r10
    截面半径/m0.040.040.050.050.060.060.060.070.070.08
    几何平均速度/ (m/s)37.542.747.953.058.063.068.072.977.882.6
    翼型安放角/(°)0.610.530.470.420.380.340.310.290.270.25
    叶栅稠密度1.221.161.121.091.081.061.051.041.041.03
    升阻比0.000.000.000.000.000.000.000.000.000.00
    升力系数1.170.990.840.720.620.540.470.420.370.33
    攻角/(°)15.913.511.510.08.77.66.86.05.44.9
    翼型NACA66a=0.8
    翼型相对拱度0.030.030.020.020.020.010.010.010.010.01
    水力效率1.001.001.001.001.001.001.001.001.001.00
    下载: 导出CSV

    表  3  改进升力法叶轮各截面部分设计参数

    Table  3.   Design parameters of each section of the improved impeller

    参数r1r 2r 3r 4r 5r 6r 7r 8r 9r 10
    截面半径/m0.040.040.050.050.060.060.060.070.070.08
    几何平均速度/(m/s)37.542.747.953.058.063.068.072.977.882.6
    翼型安放角/(°)27.123.620.918.817.115.814.613.612.712.0
    叶栅稠密度1.241.171.131.101.081.061.051.051.041.03
    升阻比0.040.040.040.040.040.040.040.040.040.04
    升力系数1.150.980.830.710.620.540.470.420.370.33
    攻角/(°)9.327.796.555.564.784.163.673.282.962.71
    翼型NACA66a=0.8
    翼型相对拱度0.020.020.020.010.010.010.010.010.010.01
    水力效率1.001.001.001.001.001.001.001.001.001.00
    下载: 导出CSV

    表  4  导叶各截面部分设计参数

    Table  4.   Design parameters of each section of the guide vane

    参数r1r2r3r4r5r6r7r8r9r10
    截面半径/m0.040.040.050.050.060.060.060.070.070.08
    导叶弦长/m0.020.020.020.020.020.020.020.020.020.02
    进口液流角/(°)32.835.237.539.741.743.645.447.148.750.2
    骨线圆弧半径/m0.020.020.020.020.020.020.020.020.020.02
    流道扩散角/(°)29.029.429.629.529.329.028.628.127.526.9
    下载: 导出CSV

    表  5  低比转速设计泵设计值和仿真值对比表

    Table  5.   Comparison of low specific speed design pump design value and simulation value

    设计值仿真值相对误差
    扬程128 m125 m2.34%
    效率88.3%81.53%7.66%
    下载: 导出CSV

    表  6  轴流泵空化面积量化表

    Table  6.   Cavitation area quantification table of axial flow pump cavitation

    水深/m叶轮面积/m2叶轮空化面积/m2面积占比
    300.0280.0050.193
    400.0050.183
    500.0040.148
    下载: 导出CSV
  • [1] 杨卫国, 汲国瑞, 蔡佑林. 前置导叶喷水推进轴流泵设计方法[J]. 舰船科学技术, 2020, 42(6): 44-49.

    Yang Weiguo, Ji Guorui, Cai Youlin. Research on design method of water jet propulsion axial-flow pump with front guide vane[J]. Ship Science and Technology, 2020, 42(6): 44-49.
    [2] 苑龙飞, 罗凯, 蒋彬, 等. 喷水推进系统在浅水高速工况下适应性问题的数值分析[J]. 水动力学研究与进展A辑, 2016, 31(2): 225-231.

    Yuan Longfei, Luo Kai, Jiang Bin, et al. Numerical analysis of a waterjet propulsion systerm’s adaptability on the condition of shallow water[J], Chinese Journal of Hydrodynamics, 2016, 31(2): 225-231.
    [3] Zhang R, Chen H X. Numerical analysis of cavitation within slanted axial-flow pump[J]. Journal of Hydrodynamics, 2013, 25(5): 663-672. doi: 10.1016/S1001-6058(13)60411-4
    [4] 曹玉良, 王永生, 靳栓宝. 喷水推进轴流泵三元水力设计[J]. 交通运输工程学报, 2015, 15(2): 42-49. doi: 10.3969/j.issn.1671-1637.2015.02.007

    Cao Yuliang, Wang Yongsheng, Jin Shuanbao. Three-dimensional hydraulic design of axial waterjet pump[J]. Hournal of Traffic and Transportation Engineering, 2015, 15(2): 42-49. doi: 10.3969/j.issn.1671-1637.2015.02.007
    [5] Shi L, Zhu J, Tang F, et al. Multi-disciplinary optimization design of axial-flow pump impellers based on the approximation model[J]. Energies, 2020, 13(4): 779. doi: 10.3390/en13040779
    [6] 曹卫东, 张骞, 徐玉敏. 高速潜水轴流泵大流量工况的空化特性[J]. 水利水电科技进展, 2021, 41(1): 55-61,79. doi: 10.3880/j.issn.1006-7647.2021.01.009

    Cao Weidong, Zhang Qian, Xu Yumin. Cavitation characteristics of high-speed submersible axial-flow pump in high flow condition[J]. Advances in Science and Technology of Water Resources, 2021, 41(1): 55-61,79. doi: 10.3880/j.issn.1006-7647.2021.01.009
    [7] 彭凯. 轴流泵顶隙涡的数值模拟研究[J]. 水动力学研究与进展:A辑, 2018, 33(6): 685-688.

    Peng Kai. Numerical investigation of tip leakage vortex in axial-flow pump[J]. Chinese Journal of Hydrodynamics, 2018, 33(6): 685-688.
    [8] 袁建平, 范猛, Pace G, 等. 高比转速轴流泵正交优化设计研究[J]. 振动与冲击, 2018, 37(22): 115-121.

    Yuan Jianping, Fan Meng, Pace G, et al. Orthogonal optimum design method for high specific-speed axial-flow pumps[J]. Journal of Vibration and Shock, 2018, 37(22): 115-121.
    [9] Gerakopulos R, Boutilier M, Yarusevych S. Aerodynamic characterization of a NACA 0018 airfoil at low reynolds numbers[C]//Fluid Dynamics and Co-located Conference. Reston: American Institute of Aeronautics and Astronautics, 2010.
    [10] 关醒凡. 现代泵理论与设计[M]. 北京: 中国宇航出版社, 2010.
    [11] 杨从新, 王玲, 杨焘. 导叶叶片厚度对核主泵性能的影响[J]. 兰州理工大学学报, 2019, 45(2): 45-50. doi: 10.3969/j.issn.1673-5196.2019.02.008

    Yang Congxin, Wang Ling, Yang Shou. Effect of guide vane thickness on performance of nuclear mean pump[J]. Journal of Lanzhou University of Technology, 2019, 45(2): 45-50. doi: 10.3969/j.issn.1673-5196.2019.02.008
    [12] 李忠, 杨敏官, 姬凯, 等. 轴流泵叶顶间隙空化流可视化实验研究[J]. 工程热物理学报, 2011, 32(8): 1315-1318.

    Li Zhong, Yang Minguan, Ji Kai, et al. Visualization research on cavitating flow in tip clearance of axial-flow pump[J]. Journal of Engineering Thermophysics, 2011, 32(8): 1315-1318.
    [13] 吴子娟, 侯聪, 梁武科, 等. 叶片安装角对轴流泵空化性能的影响[J]. 水动力学研究与进展(A辑), 2020, 35(3): 277-284.

    Wu Zijuan, Hou Cong, Liang Wuke, et al. Effect of blade installation angle on cavitation performance of axial flow pump[J]. Chinese Journal of Hydrodynamics, 2020, 35(3): 277-284.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-11
  • 修回日期:  2023-05-22
  • 录用日期:  2023-05-30
  • 网络出版日期:  2024-01-29

目录

    /

    返回文章
    返回
    服务号
    订阅号