Passive Detection of Undersea Vehicle Acoustic Fuze Based on Energy Variation
-
摘要: 针对水下航行器对运动目标拦截末程声引信实时有效检测问题, 利用水下航行器所接收目标的辐射噪声能量快速变化特性, 提出了一种水下航行器声引信被动检测方法。通过快速傅里叶变换对接收的目标辐射噪声进行转换, 在频域实现频带内能量计算, 得到信号能量变化曲线, 利用设计的滤波器对能量曲线进行平滑处理, 并计算曲线斜率。仿真分析与实测数据处理结果表明, 信号能量曲线斜率能有效地反映水下航行器与目标交汇过程中声引信接收噪声的能量变化特点, 可以作为交汇最短距离和引信输出最佳时刻的重要判据。Abstract: Aiming at the problem of real-time and effective detection of an acoustic fuze at the end of the intersection between an undersea vehicle and a moving target, a passive detection of acoustic fuze for undersea vehicles was presented, which used the fast-changing energy characteristics of the received noise radiated by target. The noise received by the undersea vehicle acoustic fuze was converted using the fast Fourier transform(FFT), and the energy of the noise in the working frequency band was calculated to obtain the signal energy changing curve. Finally, the energy curve was smoothed by the designed filter, and the slope of the curve was calculated. The results of the simulation and processing of the measured data showed that the slope of the signal energy curve can effectively reflect the energy change characteristics of the noise received by the acoustic fuze in the intersection process between the undersea vehicle and moving target, and the slope of the signal energy curve can be used as an important criterion for the shortest distance between the undersea vehicle and moving target and the best time for acoustic fuze to give out an action signal.
-
Key words:
- undersea vehicle /
- acoustic fuze /
- passive detection /
- radiated noise /
- slop
-
[1] 陈川. 基于水下小平台的被动声探测定位技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. [2] 张士忠. 声引信中线谱检测的相关方法和时频分析[D]. 哈尔滨: 哈尔滨工程大学, 2007. [3] 赵国库. 引信水中超声波探测技术研究[D]. 南京: 南京理工大学, 2005.
[3] 谭菊琴. 引信水下目标探测超声波发射与控制技术研究[D]. 南京: 南京理工大学, 2015. [4] 崔户山, 崔贵平, 王明洲. 基于短时傅立叶变化反鱼雷鱼雷主动声引信浅水检测方法[J]. 舰船科学技术, 2012, 34 (6): 87-90.Cui Hu-shan, Cui Gui-ping, Wang Ming-zhou. Detection Methed of Anti-torpedo Torpedo’s Active Acoustic Fuze in Shallow Water Based on STFT[J]. Ship Science and Technology, 2012, 34(6): 87-90. [5] 尤立克. 水声原理[M]. 哈尔滨: 哈尔滨船舶工程学院出版社, 1990: 274. [6] 陈子铨, 何文翔. 干扰背景下的被动声引信处理方法[J]. 声学技术, 2018, 37(4): 58-59.Chen Zi-quan, He Wen-xiang, The Treatment of Passive Acoustic Fuse in Presence of Interference[J]. Technical Acoustics, 2018, 37(4): 58-59. [7] 孙钟阜, 庞博. 主被动声引信联合使用策略研究[J]. 声学技术, 2017, 36(6): 545-548.Sun Zhong-fu, Pang Bo. Research on Joint Use Strategy of Active/Passive Acoustic Fuze[J]. Technical Acoustics, 2017, 36(6): 545-548. [8] 刘科满, 相敬林, 侯铁双, 等. 基于目标过零特性与能量特性的声引信检测方法[J]. 兵工学报, 2008, 29(9): 1044-1048.Liu Ke-man, Xiang Jing-lin, Hou Tie-shuang, et al. A Joint Method of Zero-crossing Detection and Energy Detection[J]. Acta ArmamentarII, 2008, 29(9): 1044-1048. [9] 孙钟阜. 基于目标能量特性的被动声引信[J]. 声学技术, 2012, 31(6): 574-577.Sun Zhong-fu. Passive Acoustic Fuse Based on Energy Feature of Target[J]. Technical Acoustics, 2012, 31(6): 574-577. [10] 姚晓莹. 水下目标信号的能量熵检测与倒谱特征分析技术[D]. 哈尔滨: 哈尔滨工程大学, 2014. [11] 胡广书. 数字信号处理-理论、算法与实现[M]. 北京: 清华大学出版社, 2003: 122. -

计量
- 文章访问数: 30
- HTML全文浏览量: 0
- PDF下载量: 17
- 被引次数: 0