• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑时延约束的UUV密集集群自适应聚集控制方法

梁洪涛 康凤举

梁洪涛, 康凤举. 考虑时延约束的UUV密集集群自适应聚集控制方法[J]. 水下无人系统学报, 2023, 31(2): 221-228 doi: 10.11993/j.issn.2096-3920.202112012
引用本文: 梁洪涛, 康凤举. 考虑时延约束的UUV密集集群自适应聚集控制方法[J]. 水下无人系统学报, 2023, 31(2): 221-228 doi: 10.11993/j.issn.2096-3920.202112012
LIANG Hongtao, KANG Fengju. Adaptive Flocking Control for Crowded UUV Swarm with Time-Delay Constraint[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 221-228, 258. doi: 10.11993/j.issn.2096-3920.202112012
Citation: LIANG Hongtao, KANG Fengju. Adaptive Flocking Control for Crowded UUV Swarm with Time-Delay Constraint[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 221-228, 258. doi: 10.11993/j.issn.2096-3920.202112012

考虑时延约束的UUV密集集群自适应聚集控制方法

doi: 10.11993/j.issn.2096-3920.202112012
基金项目: 国家自然基金(62203286); 陕西省自然科学基金(2022JM-312); 中央高校基本科研业务费专项项目(GK202103014)
详细信息
    作者简介:

    梁洪涛(1988-), 男, 博士, 副教授, 主要研究方向为水下无人集群系统建模、控制与仿真

  • 中图分类号: TJ630.1; U674.941

Adaptive Flocking Control for Crowded UUV Swarm with Time-Delay Constraint

  • 摘要: 针对时延条件下无人水下航行器(UUV)集群聚集控制问题, 受不同尺度生物仿生机理启发, 提出一种密集集群自适应聚集控制方法。首先, 设计考虑近邻数量和空间分布的仿生邻居筛选机制, 以此建立单近邻跟随与多近邻跟随耦合的自适应集群结队交互模型, 确保交互邻居在数量和空间上最优。其次, 结合结对交互模型与一致性协议、势场函数模型和扰动观测器, 设计时延约束的UUV密集集群自适应聚集控制方法, 避免集群发生碰撞和分裂。最后, 通过Lyapunov定理证明时延条件下UUV密集集群状态一致性以及避碰和连通性保持。仿真结果验证了所设计控制方法的有效性和优越性。

     

  • 图  1  有限视野的邻居选择模型

    Figure  1.  Neighbor selection model with limited view field

    图  2  自适应近邻结对交互模型

    Figure  2.  Adaptive neighbor pair interaction model

    图  3  UUV集群初始状态(t=0 s)

    Figure  3.  Initial state of UUV swarm (t=0 s)

    图  4  UUV集群运动轨迹

    Figure  4.  Trajectory of UUV swarm

    图  5  UUV集群最终状态(t=60 s)

    Figure  5.  Final state of UUV swarm (t=60 s)

    图  6  UUV集群个体间距

    Figure  6.  Individual distances of UUV swarm

    图  7  UUV集群速度曲线

    Figure  7.  Velocity curves of UUV swarm

    图  8  UUV集群平均位置误差

    Figure  8.  Mean position errors of UUV swarm

    表  1  平均航向与尺度参数

    Table  1.   Mean heading and scale parameter

    时间/s固定距离 固定数量 文中方法
    $ {\vartheta _1}(t) $$ {\vartheta _2}(t) $$ {\vartheta _1}(t) $$ {\vartheta _2}(t) $$ {\vartheta _1}(t) $$ {\vartheta _2}(t) $
    t=0 48.5 0.85 50.5 0.88 40.2 0.82
    t=10 42.5 0.73 48.5 0.80 35.5 0.56
    t=20 39.7 0.67 44.7 0.75 39.8 0.33
    t=30 40.2 0.58 43.2 0.62 36.8 0.32
    t=40 39.4 0.52 42.4 0.53 36.8 0.32
    t=50 38.8 0.51 38.8 0.45 36.8 0.32
    t=60 36.9 0.51 37.1 0.45 36.8 0.32
    下载: 导出CSV
  • [1] Fischell E M, Kroo A R, Neill B W. Single-hydrophone low-cost underwater vehicle swarming[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 354-361. doi: 10.1109/LRA.2019.2958774
    [2] Liang H T, Fu Y F, Kang F J, et al. A behavior-driven coordination control framework for target hunting by UUV intelligent swarm[J]. IEEE Access, 2020, 8(1): 4838-59.
    [3] Liang H T, Cao H, Fu Y F. Decentralized adaptive flocking control algorithm with avoiding collision and preserving connectivity for crowded UUV swarm with uncertainties and input saturation[J]. Ocean Engineering, 2021, 237: 109545. doi: 10.1016/j.oceaneng.2021.109545
    [4] Liang H T, Fu Y F, Gao J, et al. Finite-time velocity-observed based adaptive output-feedback trajectory tracking formation control for underactuated unmanned underwater vehicles with prescribed transient performance[J]. Ocean Engineering, 2021, 233: 109071. doi: 10.1016/j.oceaneng.2021.109071
    [5] Peng Z H, Wang J, Wang D, et al. An overview of recent advances in coordinated control of multiple autonomous surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 732-745. doi: 10.1109/TII.2020.3004343
    [6] Oh H, Ramezan S, Ataollah S, et al. Bio-inspired self-organising multi-robot pattern formation: A review[J]. Robotics & Autonomous Systems, 2017, 91: 83-100.
    [7] Petersen K H, Napp N, Stuart-Smith R, et al. A review of collective robotic construction[J]. Science Robotics, 2019, 28(4): 8479.
    [8] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbour rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001. doi: 10.1109/TAC.2003.812781
    [9] Morteza M, Nader M, Farzaneh A. Robust consensus of autonomous underactuated surface vessels[J]. IET Control Theory & Applications, 2017, 11(4): 486-494.
    [10] Ling H J, Guillam E M, Kasper V V, et al. Local interactions and their group-level consequences in flocking jackdaws[J]. Proceedings of Royal Society B, 2019, 286: 20190865. doi: 10.1098/rspb.2019.0865
    [11] Ariana S P, Colin, R T, Nikolai W F, et al. Visual sensory networks and effective information transfer in animal groups[J]. Current Biology, 2013, 23(17): 709-711. doi: 10.1016/j.cub.2013.07.059
    [12] 张令, 段海滨, 雍婷, 等. 基于寒鸦配对交互行为的无人机集群编队控制[J]. 北京航空航天大学学报, 2021, 47(2): 391-397.

    Zhang Ling, Duan Haibin, Yong Ting, et al. Unmanned aerial vehicle swarm formation control based on paired interaction mechanism in jackdaws[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 391-397.
    [13] 雷小康, 刘明雍, 杨盼盼. 基于邻域跟随的群集系统分群控制算法[J]. 控制与决策, 2013, 28(5): 741-745.

    Lei Xiaokang, Liu Mingyong, Yang Panpan. Fission control algorithm for swarm based on local following interaction[J]. Control and Decision, 2013, 28(5): 741-745.
    [14] Liang H T, Fu Y F, Gao J. Bio-inspired self-organized cooperative control consensus for crowded UUV swarm based on adaptive dynamic interaction topology[J]. Applied Intelligence, 2021, 51: 4664-4681. doi: 10.1007/s10489-020-02104-5
    [15] Kubota T. Investigation of obstacle avoidance algorithm in paired-driving autonomous mobile robots revealed by mimicking ultrasonic sensing in bats[J]. The Journal of the Acoustical Society of America, 2019, 146: 2959.
    [16] 张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289-297. doi: 10.11990/jheu.201909039

    Zhang Wei, Wang Naixin, Wei Shilin, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289-297. doi: 10.11990/jheu.201909039
    [17] 杨盼盼, 张瑾琪, 刘家毓. 水声通信时延下集群式AUV分群控制算法[J]. 兵器装备工程学报, 2018, 39(12): 113-117. doi: 10.11809/bqzbgcxb2018.12.023

    Yang Panpan, Zhang Jinqi, Liu Jiayu. Fission control algorithm for swarm underwater vehicles with acoustic communication delay[J]. Journal of Ordnance Equipment Engineering, 2018, 39(12): 113-117. doi: 10.11809/bqzbgcxb2018.12.023
    [18] Yan Z P, Liu Y B, Zhou J J, et al. Consensus of multiple autonomous underwater vehicles with double independent markovian switching topologies and time varying delays[J]. Chinese Physics B, 2017, 26(4): 040203. doi: 10.1088/1674-1056/26/4/040203
    [19] Yan Z P, Yang Z W, Yue L D, et al. Discrete-time coordinated control of leader-following multiple AUVs under switching topologies and communication delays[J]. Ocean Engineering, 2019, 172: 361-372. doi: 10.1016/j.oceaneng.2018.12.018
    [20] 李沛, 段海滨. 一种基于注意力机制的群集运动模型[J]. 中国科学: 科学技术, 2019, 49(9): 1040-50. doi: 10.1360/N092018-00135

    Li Pei, Duan Haibin. A flocking model base on selective attention mechanism[J]. Scientia Sinica: Technologica, 2019, 49(9): 1040-50. doi: 10.1360/N092018-00135
    [21] 刘磊, 孙卓文, 陈令仪, 等. 基于深度学习的仿生集群运动智能控制[J]. 控制与决策, 2021, 36(9): 2195-02.

    Liu Lei, Sun Zhuowen, Chen Lingyi, et al. Intelligent control of bionic collective motion based on deep learning[J]. Control and Decision, 2021, 36(9): 2195-02.
    [22] Sahu B, Subudhi B. Flocking control of multiple AUVs based on fuzzy potential functions[J]. IEEE Transactions on Fuzzy System, 2018, 26(5): 2539-51. doi: 10.1109/TFUZZ.2017.2786261
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  15
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-02-14
  • 录用日期:  2022-12-07

目录

    /

    返回文章
    返回
    服务号
    订阅号