• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅析美军水下无人作战系统及其关键技术

聂卫东 马 玲 张 博 张 龙

聂卫东, 马 玲, 张 博, 张 龙. 浅析美军水下无人作战系统及其关键技术[J]. 水下无人系统学报, 2017, 25(新刊4): 310-318. doi: 10.11993/j.issn.2096-3920.2017.04.002
引用本文: 聂卫东, 马 玲, 张 博, 张 龙. 浅析美军水下无人作战系统及其关键技术[J]. 水下无人系统学报, 2017, 25(新刊4): 310-318. doi: 10.11993/j.issn.2096-3920.2017.04.002
NIE Wei-dong, MA Ling, ZHANG Bo, ZHANG Long. A Brief Analysis of United States Unmanned Underwater Combat System[J]. Journal of Unmanned Undersea Systems, 2017, 25(新刊4): 310-318. doi: 10.11993/j.issn.2096-3920.2017.04.002
Citation: NIE Wei-dong, MA Ling, ZHANG Bo, ZHANG Long. A Brief Analysis of United States Unmanned Underwater Combat System[J]. Journal of Unmanned Undersea Systems, 2017, 25(新刊4): 310-318. doi: 10.11993/j.issn.2096-3920.2017.04.002

浅析美军水下无人作战系统及其关键技术

doi: 10.11993/j.issn.2096-3920.2017.04.002
详细信息
    作者简介:

    聂卫东(1972-), 男, 博士, 高级工程师, 主要研究方向为水中兵器总体设计.

  • 中图分类号: TJ630; U674.941

A Brief Analysis of United States Unmanned Underwater Combat System

  • 摘要: 水下无人作战系统以其成本低廉、机动能力和渗透能力强、安全性和适应性高等优势, 已日益发展为水下作战的主要力量。文章通过对美军发布的相关文献的整理和解读, 提出了水下无人作战系统的基本功能性概念。简要介绍了美军当前已部署和正在发展的可部署分布自主系统(DADS)、近海水下持续监视网(PLUSNet)、分布式敏捷反潜系统(DASH)、先进水下武器系统(AUWS)、浮沉载荷(UFP)以及“海德拉”(Hydra)等水下无人作战系统项目情况, 分析了能源与动力技术、水下传感器网络技术、通信技术、水下组合导航技术以及多传感器信息融合技术等关键技术领域的发展现状, 并对未来水下无人作战系统在技术和装备两方面的发展前景进行了展望。旨在引起同行研究者的关注, 促进开展更为深入和广泛的研究。

     

  • [1] United States Department of Defense. Unmanned Systems Roadmap FY2007-2032[R]. U.S.: United States Depart- ment of Defense, 2007.
    [2] Defense Science Board. Next-Generation Unmanned Undersea Systems[R]. U.S.: Office of the Secretary of De- fense, 2016.
    [3] John Merrill. Remembering: the Sound Surveillance System (SOSUS)[J]. The Submarine Review, 2007(10): 97- 107.
    [4] Joseph A R. US Navy Seaweb Development[C]//Montreal, Quebec, Canada: The Second Workshop on Underwater Networks, 2007: 3-4.
    [5] Cebrowski A K, Garstka J J. Network-Centric Warfare: Its origin and Future[C]//US: Naval Proceedings, 1998.
    [6] United States Department of Defense. Unmanned Systems Integrated Roadmap FY2013-2038[R]. U.S.: United States Department of Defense, 2013.
    [7] Jones M L. Connecting the underwater battle space[C]//UDT Europe, 2004.
    [8] Grund M, Freitag L, Preisig J, et al. The PLUSNet Underwater Communications System: Acoustic Telemetry for Undersea Surveillance[C]//Boston: OCEANS 2006 MTS/ IEEE Conference and Exhibition, 2006: 1-5.
    [9] Shelby Sullivan. Distributed Agile Submarine Hunting (DASH). [EB/OL]. [2017-03-24]. https://www.darpa.mil /program/Distributed-Agile-Subma-rine-Hunting.
    [10] Karl A. Van Bibber. Advanced Undersea Warfare Systems[R]. U.S.: Naval Postgraduate School. NPS-SE-11- 004, 2011.
    [11] DARPA. Upward Falling Payloads Advances Deep-sea Payload Technology[EB/OL]. (2014-03-26)[2017-03-24]. http://www.darpa.mil/news-events/2014-03-26.
    [12] 张帆. 海战规则改变者——“海德拉”[EB/OL]. (2016-10-14)[2017-03-24]. https://mp.weixin.qq.com/s?__biz=MzA3NDAxNTcxOQ==&mid=2650898289&idx=1&sn=b33eac5159c88dbbfd4edf0e54bb9182&chksm=84f3e9f9b38460ef40b4e18d9abcdaf168729cf588c40f1a9d77a131d48b237347f6fd2af3fa&mpshare=1&scene=23&srcid=1011kvypbwmnQpNQylHk1Nw2#rd.
    [13] 马晓晨. 国外新型水下动力源技术[EB/OL]. (2017-05-19)[2017-03-24]. http://www.sohu.com/a/143716904_ 698 276
    [14] Tayhas G, Palmore R, Whitesides M. Microbial and Enzymatic Biofuel Cells[M]. Washington DC: American Chemical Society, 1994: 271-290.
    [15] Thombare D G, Verma S K. Technological Development in the Stirling Cycle Engines[J]. Renewable and Sustainable Energy Reviews, 2008(12): 1-38.
    [16] 沈天健, 梁代骅, 蔡建华, 等.具有独特用途的放射性同位素电池[J]. 核技术, 2010, 33(8): 625-630.

    Shen Tian-jian, Liang Dai-hua, Cai Jian-hua, et al. Radio-isotope Battery for Particular Application[J]. Nuclear Techniques, 2010, 33(8): 625-630.
    [17] Girishkumar G, McCloskey B, Luntz A C, et al. Lithiumair Battery: Promise and Challenges[J]. Journal of Physical Chemistry Letters, 2010, 1(14): 2193-2203.
    [18] Dario Pompili, Tommaso Melodia. Three-dimensional and Two-dimensional Deployment Analysis for Underwater Acoustic Sensor Networks[J]. Ad Hoc Network. 2009, 7(4): 778-790.
    [19] 杨宁, 田辉, 张平, 等. 无线传感器网络拓扑结构研究[J]. 无线电工程, 2006, 36(2): 11-13.

    Yang Ning, Tian Hui, Zhang Ping, et al. Research on Topological Structure of Wireless Sensor Network[J]. Radio Engineering, 2006, 36(2): 11-13.
    [20] 郭忠文, 罗汉江, 洪锋, 等.水下无线传感器网络的研究进展[J]. 计算机研究与发展, 2010, 47(3): 377-389.

    Guo Zhong-wen, Luo Han-jiang, Hong Feng, et al. Current Progress and Research Issues in Underwater Sensor Networks[J]. Journal of Computer Research and Devel-opment, 2010, 47(3): 377-389.
    [21] Stojanovic M. Low Complexity OFDM Detector for Underwater Channels[C]//MTS/IEEE Oceans’06. Boston, 2006.
    [22] Zhou Yue-hai, Cao Xiu-ling, Tong Feng. Acoustic MIMO Communications in a Very Shallow Water Channel[J]. Journal of Marine Science and Application, 2015(4): 434-439.
    [23] Edelmann G F. An Overview of Time-reversal Acoustic Communications[C]//Proceedings of Turkish International Conference in Acoustics, 2005.
    [24] F C Painter. Submarine Laser Communications[J]. Defense Electronics, 1989, 21(6): 82-94.
    [25] 潘为炎. 长波超长波极长波传播[M]. 成都: 电子科技大学出版社, 2004: 285-365.
    [26] 陶雯, 陈鼎鼎, 何宁宁. 国外海军潜艇通信技术与装备发展[J]. 通信技术, 2015, 48(4): 375-381.

    Tao Wen, Chen Ding-ding, He Ning-ning. Development of Foreign Navy Submarine Communication Technology and Equipment[J]. Communications Technology, 2015, 48(4): 375-381.
    [27] 刘翠海, 王文清. 外军潜艇通信关键技术与发展趋势[J]. 电讯技术, 2011, 51(7): 187-191.

    Liu Cui-hai, Wang Wen-qing. Key Technology and Developing Trend of Foreign Navies’ Submarine Communications[J]. Telecommunication Engineering, 2011, 51(7): 187-191.
    [28] 虞霖方, 夏爱萍, 吴有俊. 对潜通信的现状及其发展趋势[J]. 舰船电子工程, 2014, 34(1): 1-3.

    Yu Lin-fang, Xia Ai-ping, Wu You-jun. Existing Condition and the Developing Trends of Submarine Communication[J]. Ship Electronic Engineering, 2014, 34(1): 1-3.
    [29] 何友, 王国宏, 陆大铨, 等. 多传感器信息融合及应用[M]. 北京: 电子工业出版社, 2000.
    [30] 陈宗基, 魏金钟, 王英勋, 等. 无人机自主控制等级及其系统结构研究[J]. 航空学报, 2011, 32(6): 1075-1083.

    Chen Zong-ji, Wei Jin-zhong, Wang Ying-xun, et al. UAV Autonomous Control Levels and System Structure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1075-1083.
    [31] Defense Science Board. Autonomy[R]. U.S.: Office of the Secretary of Defense, 2016.
  • 加载中
计量
  • 文章访问数:  2285
  • HTML全文浏览量:  8
  • PDF下载量:  2675
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-05
  • 修回日期:  2017-09-20
  • 刊出日期:  2017-10-31

目录

    /

    返回文章
    返回
    服务号
    订阅号