• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 32 Issue 4
Aug  2024
Turn off MathJax
Article Contents
XING Minghan, SHANG Zhigang, QIAO Gang, ZHOU Feng, NIE Donghu, ZHANG Tong, LI Tianshui, XIE Jiaxuan. Cross-Domain Communication Buoy System Based on Optimal Communication Link Selection[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 650-658. doi: 10.11993/j.issn.2096-3920.2024-0113
Citation: XING Minghan, SHANG Zhigang, QIAO Gang, ZHOU Feng, NIE Donghu, ZHANG Tong, LI Tianshui, XIE Jiaxuan. Cross-Domain Communication Buoy System Based on Optimal Communication Link Selection[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 650-658. doi: 10.11993/j.issn.2096-3920.2024-0113

Cross-Domain Communication Buoy System Based on Optimal Communication Link Selection

doi: 10.11993/j.issn.2096-3920.2024-0113
  • Received Date: 2024-06-12
  • Accepted Date: 2024-07-22
  • Rev Recd Date: 2024-07-20
  • Available Online: 2024-07-25
  • The existing marine buoy communication mode is single, with low reliability, high packet loss rate, and poor real-time performance, which cannot meet the needs of large-scale marine data acquisition and cross-domain communication. In order to further strengthen the construction of marine global interconnection, a cross-domain communication buoy system with multi-source communication as the core was designed and manufactured. The system could complete the switching of multiple communication modes, multi-source information acquisition, and multi-link real-time cross-domain communication. An optimal communication link selection algorithm was designed for the system. According to the real-time signal quality of each communication module, the optimal communication link was selected to improve the reliability of communication. At the same time, the communication module with poor signal quality was closed to reduce the problem of large redundancy and power consumption of system communication that may occur when multiple communication methods are used at the same time. The experimental results show that the system realizes the cross-domain transmission of water surface and underwater data, and the multi-source communication design is feasible. The communication links are stable and reliable, and the comprehensive communication success rate is more than 99%. It provides a reference for the construction of a marine global observation network and communication network.

     

  • loading
  • [1]
    李忠孝, 罗荣, 王刚, 等. 基于宽频认知层叠网的海上跨域协同组网通信技术[J]. 水下无人系统学报, 2024, 32(2): 215-227.

    LI Z X, LUO R, WANG G, et al. Maritime cross-domain collaboration networking communication technology based on broadband cognitive stacked networks[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 215-227.
    [2]
    江帆, 魏兆强, 马昕, 等. 低功耗双处理器漂流浮标系统[J]. 海洋技术学报, 2023, 42(5): 44-55.

    JIANG F, WEI Z Q, MA X, et al. Low power dual processor drifting buoy system[J]. Journal of Ocean Technology, 2023, 42(5): 44-55.
    [3]
    孙海文, 王溪野, 王兆辰, 等. 海上异构无人集群协同运用发展概况及启示[J]. 水下无人系统学报, 2024, 32(2): 275-281.

    SUN H W, WANG X Y, WANG Z C, et al. Development overview and inspiration of collaborative application of heterogeneous unmanned clusters at sea[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 275-281.
    [4]
    邱志明, 孟祥尧, 马焱, 等. 海上无人系统跨域协同运用与技术发展[J]. 水下无人系统学报, 2024, 32(2): 184-193.

    QIU Z M, MENG X Y, MA Y, et al. Cross-domain collaborative application and technology development of maritime unmanned systems[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 184-193.
    [5]
    李沫, 郭栋, 周东红, 等. 卫星互联网支撑跨域无人集群作战[J]. 水下无人系统学报, 2024, 32(2): 208-214.

    LI M, GUO D, ZHOU D H, et al. Cross-domain unmanned cluster combat supported by satellite internet[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 208-214.
    [6]
    SHANG Z G, ZHANG H Y. Cross-medium communication: Utilizing relay to achieve air-sea cross-medium communication technology and applications[C]//Proceedings of the 2nd International Conference on Internet of Things, Communication and Intelligent Technology. Xuzhou, China: Springer, 2024.
    [7]
    孙子奇. 基于北斗卫星的大型海洋浮标通信机制探究[J]. 设备管理与维修, 2022(10): 111-113.

    SUN Z Q. Research on communication mechanism of large ocean buoy based on BeiDou satellite[J]. Plant Maintenance Engineering, 2022(10): 111-113.
    [8]
    庞茗文, 罗晶晶, 黄圣, 等. 基于多种通信方式的海洋浮标站海洋气象灾害预警系统设计与开发[J]. 气象水文海洋仪器, 2024, 41(1): 111-114.

    PANG M W, LUO J J, HUANG S, et al. Design and development of marine meteorological disaster early warning system for ocean buoy station based on multiple communication modes[J]. Meteorological, Hydrological and Marine Instruments, 2024, 41(1): 111-114.
    [9]
    MARTÍNEZ-OSUNA J F, OCAMPO-TORRES F J, GUTIÉRREZ-LOZA L, et al. Coastal buoy data acquisition and telemetry system for monitoring oceanographic and meteorological variables in the Gulf of Mexico[J]. Measurement, 2021, 183: 109841.
    [10]
    马凤强, 吕婷婷, 张浩. 应用于智能浮标的北斗铱星双模通信系统设计[J]. 传感器与微系统, 2021, 40(5): 107-110.

    MA F Q, LÜ T T, ZHANG H. Design of BeiDou and Iridium dual-mode communication system for smart float[J]. Transducer and Microsystem Technologies, 2021, 40(5): 107-110.
    [11]
    黄思育. 基于天通卫星通信的海洋浮标监测系统设计[J]. 东莞理工学院学报, 2021, 28(1): 43-47.

    HUANG S Y. Design of marine buoy monitoring system based on Tiantong satellite communications[J]. Journal of Dongguan University of Technology, 2021, 28(1): 43-47.
    [12]
    张锦灿, 王志欣, 王大宇, 等. 跨介质通信系统链路设计[C]//中国声学学会水声学分会2019年学术会议论文集. 上海: 中国声学学会水声学分会, 2019.
    [13]
    郑思远, 李斌, 曹秀岭, 等. 跨介质水声网络试验平台设计与试验[J]. 水下无人系统学报, 2018, 26(6): 618-622.

    ZHENG S Y, LI B, CAO X L, et al. Design and test of a cross-media underwater acoustic network test platform[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 618-622.
    [14]
    胡颖, 万隆君, 徐轶群. 可抛弃式水动力监测微型浮标设计[J]. 海洋技术学报, 2021, 40(1): 35-42.

    HU Y, WAN L J, XU Y Q. Design of disposable micro-buoy for hydrodynamic monitoring[J]. Journal of Ocean Technology, 2021, 40(1): 35-42.
    [15]
    姜斌, 厉运周, 陈永华. 基于Linux的气象水文浮标采集系统设计及实现[J]. 海洋科学, 2021, 45(7): 95-102.

    JIANG B, LI Y Z, CHEN Y H. Design and implementation of a meteorological and hydrological buoy acquisition system based on Linux[J]. Marine Sciences, 2021, 45(7): 95-102.
    [16]
    SUN Y C, WU S J, CHEN Y H, et al. Disposable portable buoy for data transmission between seafloor equipment and onshore laboratories[J]. Ocean Engineering, 2024, 301: 117574.
    [17]
    张新文, 刘同木, 周保成, 等. 基于物联网的浮标数据采集与控制系统设计[J]. 海洋科学进展, 2024, 42(1): 196-206.

    ZHANG X W, LIU T M, ZHOU B C, et al. Design of buoy data acquisition and control system based on Internet of things[J]. Advances in Marine Science, 2024, 42(1): 196-206.
    [18]
    钱帆, 赵启兵, 蒋婷婷, 等. 基于5G通信与北斗短报文的近海小型浮标通信系统设计方法[J]. 兵工自动化, 2024, 43(3): 42-47.

    QIAN F, ZHAO Q B, JIANG T T, et al. A design method of offshore small buoy communication system based on 5G communication and BeiDou short message[J]. Ordnance Industry Automation, 2024, 43(3): 42-47.
    [19]
    YIN J W, ZHU G J, HAN X, et al. Temporal correlation and message-passing-based sparse Bayesian learning channel estimation for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2024, 49(2): 522-541. doi: 10.1109/JOE.2023.3330523
    [20]
    LIU Y F, ZHAO Y J, GERSTOFT P, et al. Deep transfer learning-based variable Doppler underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 2023, 154(1): 232-244. doi: 10.1121/10.0020147
    [21]
    SUN D J, WU J, HONG X P, et al. Iterative double-differential direct-sequence spread spectrum reception in underwater acoustic channel with time-varying Doppler shifts[J]. The Journal of the Acoustical Society of America, 2023, 153(2): 1027-41. doi: 10.1121/10.0017116
    [22]
    XI F B, PANG Y K, LIU G X, et al. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission[J]. Nano Energy, 2019, 61: 1-9. doi: 10.1016/j.nanoen.2019.04.026
    [23]
    王巍, 普湛清, 钮彪, 等. 一种水声自适应通信的信噪比估计方法[J]. 水下无人系统学报, 2022, 30(6): 768-773.

    WANG W, PU Z Q, NIU B, et al. A signal-to-noise ratio estimation method for underwater acoustic adaptive communication[J]. Journal of Unmanned Undersea System, 2022, 30(6): 768-773.
    [24]
    SHANG Z G, LI M, AN Y Y, et al. Data splitting method based on air-sea cross-domain gateway communication information transmission[C]//Proceedings of the 2022 IEEE International Conference on Unmanned Systems. Guangzhou, China: Institute of Electrical and Electronics Engineers Inc., 2022.
    [25]
    商志刚, 徐晓帆, 梁萱卓, 等. 基于卫星链路的空海跨域通信系统设计[J]. 信息通信技术与政策, 2021(10): 63-67.

    SHANG Z G, XU X F, LIANG X Z, et al. Design of air-sea cross-domain communication system based on satellite links[J]. Information and Communications Technology and Policy, 2021(10): 63-67.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article Views(48) PDF Downloads(18) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return