• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 32 Issue 4
Aug  2024
Turn off MathJax
Article Contents
ZHANG Xiayu, ZHANG Jiahao, JIAO Jie, LIU Yi. 2FSK Communication System Demodulation Algorithm for Novel Acoustically Excited SLF Antennas[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 621-627. doi: 10.11993/j.issn.2096-3920.2024-0106
Citation: ZHANG Xiayu, ZHANG Jiahao, JIAO Jie, LIU Yi. 2FSK Communication System Demodulation Algorithm for Novel Acoustically Excited SLF Antennas[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 621-627. doi: 10.11993/j.issn.2096-3920.2024-0106

2FSK Communication System Demodulation Algorithm for Novel Acoustically Excited SLF Antennas

doi: 10.11993/j.issn.2096-3920.2024-0106
  • Received Date: 2024-06-04
  • Accepted Date: 2024-07-03
  • Rev Recd Date: 2024-06-29
  • Available Online: 2024-07-11
  • There exist some problems for acoustically excited super low frequency(SLF) antennas, such as low transmission power and low received signal-to-noise ratio. In addition, it is difficult to design a narrow-band filter in traditional binary frequency-shift keying(2FSK) non-coherent demodulation. Therefore, a 2FSK weak signal demodulation method based on a Duffing chaotic oscillator was proposed. Because the Duffing oscillator itself was sensitive to the phase, a phase synchronization method of “coarse synchronization + fine synchronization” was designed. The coarse synchronization was accomplished through the short-time Fourier transform, while the fine synchronization was achieved through the Duffing chaotic oscillator. Then, the properties of the chaotic oscillator, such as being sensitive to the same-frequency periodic signal and being immune to noise signals, were utilized, and the signal passed through two Duffing oscillators in parallel, with the built-in signal frequency of the two being consistent with the two carrier frequencies. At a certain moment when one system must be in the large-scale periodic state and the other in the chaotic state, the two systems could be discriminated to realize signal demodulation. The simulation results show that the proposed Duffing oscillator demodulation algorithm outperforms the non-coherent and coherent demodulation algorithms by 5 dB and 4 dB in bit error rate, respectively.

     

  • loading
  • [1]
    丁宏. DARPA机械天线项目或掀起军事通信革命[J]. 现代军事, 2017(4): 71-73.
    [2]
    丁春全, 宋海洋. 机械天线运动电荷和磁偶极子辐射研究[J]. 舰船电子工程, 2019, 39(2): 166-170. doi: 10.3969/j.issn.1672-9730.2019.02.041
    [3]
    周强, 姚富强, 施伟, 等. 机械式低频天线机理及其关键技术研究[J]. 中国科学: 技术科学, 2020, 50(1): 69-84. doi: 10.1360/SST-2019-0118

    ZHOU Q, YAO F Q, SHI W, et al. Research on mechanism and key technology of mechanical antenna for a low-frequency transmission[J]. Sci Sin Tech, 2020, 50(1): 69-84. doi: 10.1360/SST-2019-0118
    [4]
    郝振洋, 汪禹萱, 周强, 等. 旋转永磁式机械低频天线的系统设计与验证[J]. 国防科技大学学报, 2023, 45(1): 67-73. doi: 10.11887/j.cn.202301007

    HAO Z Y, WANG Y X, ZHOU Q, et al. System design and verification of rotating-magnet based mechanical low-frequency antenna[J]. Journal of National University of Defense Technology, 2023, 45(1): 67-73. doi: 10.11887/j.cn.202301007
    [5]
    DROBITCH J L, DE A, DUTTA K, et al. Extreme subwavelength magnetoelastic electromagnetic antenna implemented with multiferroic nanomagnets[J]. Advanced Materials Technologies, 2020, 5(8): 2000316. doi: 10.1002/admt.202000316
    [6]
    关恩强. 面向新型机械天线的调频通信系统研究[D]. 西安: 西安电子科技大学, 2021.
    [7]
    LIU Y, LIU Q, GONG S H, et al. Chirp-rate shift keying modulation for mechanical antenna based on rotating dipoles[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(4): 2989-2999. doi: 10.1109/TAP.2023.3240251
    [8]
    ZHANG W H, CAO Z X, Wang X Y, et al. Design, array, and test of super-low-frequency mechanical antenna based on permanent magnet[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2321-2329. doi: 10.1109/TAP.2023.3238643
    [9]
    BARANI N, KASHANIANFARD M, SARABANDI K. A mechanical antenna with frequency multiplication and phase modulation capability[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(7): 3726-3729. doi: 10.1109/TAP.2020.3044385
    [10]
    Wu X, Fu T H, WANG L F, et al. Bit error rate analysis of mechanical antenna based on frequency modulation [C]//2022 IEEE 22nd International Conference on Communication Technology. Nanjing: IEEE, 2022, 728-731.
    [11]
    崔勇, 吴明, 宋晓, 等. 小型低频发射天线的研究进展[J]. 物理学报, 2020, 69(20): 171-183. doi: 10.7498/aps.69.20200792
    [12]
    HASSANIEN A E, BREEN M, LI M H, et al. Acoustically driven electromagnetic radiating elements[J]. Scientific Reports, 2020, 10(1): 17006.
    [13]
    聂春燕. 混沌系统与弱信号检测[M]. 北京: 清华大学出版社, 2009: 64-65.
    [14]
    李月, 杨宝俊. 混沌振子系统(L-Y)与检测[M]. 北京: 科学出版社, 2007: 46-47.
    [15]
    王永生, 姜文志, 赵建军, 等. 一种Duffing弱信号检测新方法及仿真研究[J]. 物理学报, 2008, 57(4): 2053-2059. doi: 10.3321/j.issn:1000-3290.2008.04.012
    [16]
    李月, 杨宝俊, 石要武. 色噪声背景下微弱正弦信号的混沌检测[J]. 物理学报, 2003, 52(3): 526-530. doi: 10.3321/j.issn:1000-3290.2003.03.003
    [17]
    刘丁, 任海鹏, 李虎明. 基于 Lyapunov 指数的弱周期信号检测[J]. 仪器仪表学报, 2005, 26(12): 1215-1243. doi: 10.3321/j.issn:0254-3087.2005.12.002
    [18]
    王瑞峰, 张宏雁. 基于Duffing振子的2FSK信号检测方法研究[J]. 铁道学报, 2013, 35(7): 63-67. doi: 10.3969/j.issn.1001-8360.2013.07.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article Views(57) PDF Downloads(11) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return