• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 32 Issue 4
Aug  2024
Turn off MathJax
Article Contents
YAO Kexing, GUAN Quansheng, XIE Jiaxuan, ZHAO Hao, WANG Yan. Cross-Domain Communication System with Cloud-Based Software-Defined Acoustic[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 688-694. doi: 10.11993/j.issn.2096-3920.2024-0075
Citation: YAO Kexing, GUAN Quansheng, XIE Jiaxuan, ZHAO Hao, WANG Yan. Cross-Domain Communication System with Cloud-Based Software-Defined Acoustic[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 688-694. doi: 10.11993/j.issn.2096-3920.2024-0075

Cross-Domain Communication System with Cloud-Based Software-Defined Acoustic

doi: 10.11993/j.issn.2096-3920.2024-0075
  • Received Date: 2024-05-01
  • Accepted Date: 2024-06-13
  • Rev Recd Date: 2024-06-03
  • Available Online: 2024-06-24
  • Due to the restriction of acoustic communication performance, the performance of data transmission across the water-air interface is difficult to further improve. In this paper, a cross-domain communication system architecture with cloud-based software-defined acoustic(C-SDA) was proposed. C-SDA moved the underwater acoustic receiver from the surface relay to the cloud (i.e., the monitoring center) and used the radio communication bandwidth to exchange the computing resources of the cloud to demodulate and decode the acoustic signal. In this case, the acoustic-radio dual-stack protocol of the relay gateway was simplified to a single-stack structure, which avoided packet capsulation and re-capsulation and saved hardware costs. The C-SDA not only enabled advanced communication signal processing but also promoted rapid updates and iteration of acoustic communication technology. The field test results show that C-SDA can be applied to equalizers with higher performance and achieve a significant improvement in bit error rate compared with the self-developed embedded underwater acoustic receiver.

     

  • loading
  • [1]
    ZHAO Y, HUANG J, ZHANG P, et al. Direct air-water communication by using an optical-acoustic method[J]. Measurement, 2023, 223: 113824.
    [2]
    QIAN J, QU F, SU J, et al. Theoretical model and experiments of focused phased array for cross-medium communication in misaligned transmitter/receiver scenarios[J]. IEEE Journal of Oceanic Engineering, 2023, 48(4): 1348-1361. doi: 10.1109/JOE.2023.3263202
    [3]
    LIN Q, GAO D, JIN B, et al. Enhancing the sensitivity of photoacoustic spectrum system for liquid detection by coupling with acoustic metasurfaces[J]. Applied Physics Letters, 2023, 122(24): 242201. doi: 10.1063/5.0153453
    [4]
    JIANG W, DIAMANT R. Long-range underwater acoustic channel estimation[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 6267-6282. doi: 10.1109/TWC.2023.3241230
    [5]
    WANG Y, GUAN Q, JI F, et al. Impact and analysis of space-time coupling on slotted MAC in UANs[J]. IEEE/ACM Transactions on Networking, 2023, 32(3): 1-13.
    [6]
    LIANG Y, YU H, JI F, et al. Multitask sparse bayesian channel estimation for turbo equalization in underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2023, 48(3): 946-962. doi: 10.1109/JOE.2022.3229902
    [7]
    CIPRIANO A M, ŞAHIN S, POULLIAT C. Practical frequency-domain decision feedback equalization based on expectation propagation[J]. IEEE Communications Letters, 2023, 27(10): 2777-2781. doi: 10.1109/LCOMM.2023.3303676
    [8]
    ZHU Z, ZHOU Y, WANG R, et al. Internet of underwater things infrastructure: A shared underwater acoustic communication layer scheme for real-world underwater acoustic experiments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6991-7003.
    [9]
    ZHILIN I V, BUSHNAQ O M, MASI G D, et al. A universal multimode(acoustic, magnetic induction, optical, RF) software defined modem architecture for underwater communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9105-9116. doi: 10.1109/TWC.2023.3268418
    [10]
    DABORA R, ABAKASANGA E. On the capacity of communication channels with memory and sampled additive cyclostationary gaussian noise[J]. IEEE Transactions on Information Theory, 2023, 69(10): 6137-6166. doi: 10.1109/TIT.2023.3281519
    [11]
    MURANOV K, SMIDA B, DEVROYE N. On blind channel estimation in full-duplex wireless relay systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4685-4701. doi: 10.1109/TWC.2021.3061518
    [12]
    WANG J T. Oversampling-based combining under ISI channels[J]. IEEE Wireless Communications Letters, 2023, 12(3): 555-559. doi: 10.1109/LWC.2023.3234209
    [13]
    PRIYA P, VITERBO E, HONG Y. Low complexity MRC detection for OTFS receiver with oversampling[J]. IEEE Transactions on Wireless Communications, 2024, 23(2): 1459-1473. doi: 10.1109/TWC.2023.3289610
    [14]
    SCHLÜTER M, DÖRPINGHAUS M, FETTWEIS G P. Bounds on phase, frequency, and timing synchronization in fully digital receivers with 1-bit quantization and oversampling[J]. IEEE Transactions on Communications, 2020, 68(10): 6499-6513. doi: 10.1109/TCOMM.2020.3005738
    [15]
    TUCHLER M, KOETTER R, SINGER A C. Turbo equalization: Principles and new results[J]. IEEE Transactions on Communications, 2002, 50(5): 754-767. doi: 10.1109/TCOMM.2002.1006557
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(73) PDF Downloads(26) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return