• 中国科技核心期刊
  • JST收录期刊
Volume 32 Issue 2
Apr  2024
Turn off MathJax
Article Contents
YU Yang, SUN Siqing, ZHANG Lichuan, PAN Guang, WANG Peng. Development and Prospects of Networking Technologies for Autonomous Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 194-207. doi: 10.11993/j.issn.2096-3920.2024-0055
Citation: YU Yang, SUN Siqing, ZHANG Lichuan, PAN Guang, WANG Peng. Development and Prospects of Networking Technologies for Autonomous Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 194-207. doi: 10.11993/j.issn.2096-3920.2024-0055

Development and Prospects of Networking Technologies for Autonomous Undersea Vehicles

doi: 10.11993/j.issn.2096-3920.2024-0055
  • Received Date: 2024-03-21
  • Accepted Date: 2024-04-15
  • Rev Recd Date: 2024-04-10
  • Available Online: 2024-04-17
  • Utilizing key technologies such as underwater acoustic communication, collaborative detection, and control decision-making, autonomous undersea vehicles(AUVs) can achieve networking and form either homogeneous or heterogeneous clusters for collaborative operations. Through such networking, the capabilities of different vehicle platforms can be fully utilized, enabling information sharing, task collaboration, and resource integration among multiple platforms. Therefore, more complex maritime operations can be completed autonomously. This method based on AUV clusters not only improves the efficiency of task execution but also reduces operational costs and enhances detection, monitoring, and response capabilities in the marine domain. The research status of AUV networking in China and abroad was introduced in this paper, and the key technologies and challenges, such as networking communication, cluster perception, and control decision-making were summarized. The application requirements and the development trend of AUV networking in detection, communication and control were predicted, providing a reference for research on basic theories and practical applications of AUVs.

     

  • loading
  • [1]
    吕枫, 翦知湣. 海底观测网技术研究与应用进展[J]. 前瞻科技, 2022, 1(2): 79-91.

    Lü Feng, Jian Zhimin. Technology research and application progress of seafloor observation network[J]. Science and Technology Foresight, 2022, 1(2): 79-91.
    [2]
    王汉刚, 刘智, 张义农, 等. 水下作战的发展分析与启示[J]. 舰船科学技术, 2015(4): 246-250.

    Wang Hangang, Liu Zhi, Zhang Yinong, et al. The analysis and elicitation of development on under sea warfare[J]. Ship Science and Technology, 2015(4): 246-250.
    [3]
    张杨, 周作鹏, 田燕妮. 基于分布式概念的水下无人作战系统发展研究[J]. 舰船科学技术, 2023, 45(21): 119-124. doi: 10.3404/j.issn.1672-7649.2023.21.022

    Zhang Yang, Zhou Zuopeng, Tian Yanni. Development of distributed underwater unmanned combat[J]. Ship Science and Technology, 2023, 45(21): 119-124 doi: 10.3404/j.issn.1672-7649.2023.21.022
    [4]
    邱志明, 马焱, 孟祥尧, 等. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报, 2023, 31(1): 1-9.

    Qiu Zhiming, Ma Yan, Meng Xiangyao, et al. Analysis on the development trend and key technologies of unmanned underwater equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1-9.
    [5]
    杨绍琼, 李元昊, 孙通帅, 等. “海燕”号谱系化水下滑翔机技术发展与应用[J]. 水下无人系统学报, 2023, 31(1): 68-85.

    Yang Shaoqiong, Li Yuanhao, Sun Tongshuai, et al. Development and application of petrel serialized underwater glider technologies[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 68-85.
    [6]
    潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(1): 44-51.

    Pan Guang, Song Baowei, Huang Qiaogao, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 44-51.
    [7]
    Aquabotix SwarmDiver. A micro drone for ocean swarming[EB/OL]. [2018-04-10]. https://www.therobotreport.com/aquabotix-swarmdiver-ocean-swarming/.
    [8]
    张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289-297.

    Zhang Wei, Wang Naixin, Wei Shilin, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289-297.
    [9]
    刘乐华, 赵蛟龙, 巩天成. 美国水下无人系统发展趋势分析[J]. 数字海洋与水下攻防, 2019(1): 18-23.

    Liu Lehua, Zhao Jiaolong, Gong Tiancheng. Analysis on development trend of US unmanned undersea systems[J]. Digital Ocean & Underwater Wafare, 2019(1): 18-23.
    [10]
    韦韬, 朱遴, 梁世龙. 水下无人系统集群感知与协同技术发展[J]. 指挥控制与仿真, 2022, 44(5): 6-13.

    Wei Tao, Zhu Lin, Liang Shilong. Research on perception and cooperation technologies for underwater unmanned system swarm[J]. Command Control & Simulation, 2022, 44(5): 6-13.
    [11]
    Kalwa J. Final results of the European project GREX: Coordination and control of cooperating marine robots[J]. IFAC proceedings volumes, 2010, 43(16): 181-186. doi: 10.3182/20100906-3-IT-2019.00033
    [12]
    Kalwa J. The GREX-Project: Coordination and control of cooperating heterogeneous unmanned systems in uncertain environments[C]//OCEANS 2009. Bremen: IEEE, 2009: 1-9.
    [13]
    周宏坤, 葛锡云, 邱中梁, 等. UUV集群协同探测与数据融合技术研究[J]. 舰船科学技术, 2017, 39(12): 70-75.

    Zhou Hongkun, Ge Xiyun, Qiu Zhongliang, et al. Research on UUVs cooperative detection and data fusion[J]. Ship Science and Technology, 2017, 39(12): 70-75.
    [14]
    张少伟, 俞建成, 张艾群, 等. 多水下机器人自主海洋特征场跟踪研究[J]. 科学通报, 2013(58): 67-74.

    Zhang Shaowei, Yu Jiancheng, Zhang Aiqun, et al. Tracking strategy analysis with multi underwater vehicles for ocean feature[J]. Chinese Science Bulletin, 2013(58): 67-74.
    [15]
    科技日报. 我国实现大规模多类型无人无缆潜水器组网作业[EB/OL]. [2021-9-24]. http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2021-09/24/content_522487.htm?div=-1.
    [16]
    褚福硕, 司宗尚, 庞重光, 等. 海翼水下滑翔机测流应用[J]. 海洋科学, 2022, 46(5): 10-16.

    Chu Fushuo, Si Zongshang, Pang Chongguang, et al. Sea Wing underwater glider depth average current[J]. Marine Sciences, 2022, 46(5): 10-16.
    [17]
    Yang Y, Wang S, Wu Z, et al. Motion planning for multi-HUG formation in an environment with obstacles[J]. Ocean Engineering, 2011, 38(17/18): 2262-2269.
    [18]
    Xue D Y, Wu Z L, Wang Y H, et al. Coordinate control, motion optimization and sea experiment of a fleet of Petrel-II gliders[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-15. doi: 10.1186/s10033-018-0219-4.
    [19]
    Li S, Wang S, Zhang F, et al. Constructing the three-dimensional structure of an anticyclonic eddy in the South China Sea using multiple underwater gliders[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(12): 2449-2470.
    [20]
    高伟, 杨建, 刘菊, 等. 基于水声通信延迟的多UUV协同定位算法[J]. 系统工程与电子技术, 2014, 36(3): 539-545.

    Gao Wei, Yang Jian, Liu Ju, et al. Cooperative location of multiple UUVs based on hydro-acoustic communication delay[J]. Systems Engineering and Electronics, 2014, 36(3): 539-545.
    [21]
    高伟, 刘亚龙, 徐博. 基于双领航者的多AUV协同导航系统可观测性分析[J]. 系统工程与电子技术, 2013, 35(11): 2370-2375.

    Gao Wei, Liu Yalong, Xu Bo. Obeservability analysis of cooperative navigation system for multiple AUV based on two-leaders[J]. Systems Engineering and Electronics, 2013, 35(11): 2370-2375.
    [22]
    徐文, 李建龙, 李一平, 等. 无人潜水器组网观测探测技术进展与展望[J]. 前瞻科技, 2022, 1(2): 60-78.

    Xu Wen, Li Jianlong, Li Yiping, et al. Networks of unmanned underwater vehicles for ocean exploration: Advances and prospects[J]. Science and Technology Foresight, 2022, 1(2): 60-78.
    [23]
    宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27-44.

    Song Baowei, Pan Guang, Zhang Lichuan, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27-44.
    [24]
    Lidström V, Erstorp E S, Nordenvaad M L, et al. Non-coherent acoustic modulation for energy constrained underwater platforms[C]//OCEANS 2019. Marseille: IEEE, 2019: 1-7.
    [25]
    马璐, 温梦华, 乔钢, 等. 无人水下航行器声通信系统设计与应用[J]. 水下无人系统学报, 2018, 26(5): 449-455.

    Ma Lu, Wen Menghua, Qiao Gang, et al. Design and application of acoustic communication system for unmanned undersea vehicle[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 449-455.
    [26]
    Rodionov A Y, Kulik S Y, Unru P P. Some trial results of the hydro acoustical communication system operation for AUV and ASV group control and navigation[C]//OCEANS 2016 MTS/IEEE Monterey. USA: IEEE, 2016: 1-8.
    [27]
    Qiao G, Zhao Y, Liu S, et al. Doppler scale estimation for varied speed mobile frequency-hopped binary frequency-shift keying underwater acoustic communication[J]. The Journal of the Acoustical Society of America, 2019, 146(2): 998-1004. doi: 10.1121/1.5119263
    [28]
    徐亮. 基于改进UKF算法的多AUV协同导航方法研究[D]. 太原: 中北大学, 2020.
    [29]
    季赵胜, 王海燕, 申晓红, 等. 基于VTR-PLFM扩频调制的移动水声通信方法[J]. 鱼雷技术, 2021, 29(4): 391-399.

    Ji Zhaosheng, Wang Haiyan, Shen Xiaohong, et al. Mobile underwater acoustic communication method based on vtr-plfm spread spectrum modulation[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 391-399.
    [30]
    童峰, 高翔. 水声通信与组网[M]. 北京: 兵器工业出版社, 2020.
    [31]
    Onna Y, Suzuki T, Yamada H, et al. A 32 kHz bandwidth, 8 branch diversity underwater acoustic OFDM communication system[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). Kobe: IEEE, 2018: 1-5.
    [32]
    赵世铎, 鄢社锋. 基于扩展路径识别算法的水声OFDM系统低复杂度迭代稀疏信道估计[J]. 电子与信息学报, 2021, 43(3): 752-757.

    Zhao Shiduo, Yan Shefeng. Low-complexity iterative sparse channel estimation for underwater acoustic OFDM systems based on generalized path identification algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(3): 752-757.
    [33]
    Feng C, Luo Y, Zhang J, et al. An OFDM-based frequency domain equalization algorithm for underwater acoustic communication with a high channel utilization rate[J]. Journal of Marine Science and Engineering, 2023, 11(2): 415. doi: 10.3390/jmse11020415
    [34]
    Pu Z, Wang W, Li Y, et al. Doppler tracking and fast compensation for OFDM transmission via non-stationary underwater platforms[J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(3): 2985-2996.
    [35]
    Zhou Y, Tong F. Research and development of a highly reconfigurable OFDM MODEM for shallow water acoustic communication[J]. IEEE Access, 2019, 7: 123569-123582. doi: 10.1109/ACCESS.2019.2936933
    [36]
    Li B, Huang J, Zhou S, et al. MIMO-OFDM for high-rate underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 634-644. doi: 10.1109/JOE.2009.2032005
    [37]
    Yan H, Zhou S, Shi Z, et al. DSP implementation of SISO and MIMO OFDM acoustic modems[C]//OCEANS’10 IEEE. Sydney: IEEE, 2010: 1-6.
    [38]
    Li Z, Ventosa A B, Cuji D A, et al. MIMO-OFDM over a 10 km acoustic link: an experimental study at the suruga bay[C]//OCEANS 2022. Hampton Roads, USA: IEEE, 2022: 1-4.
    [39]
    Qin X, Diamant R. Joint channel estimation and decoding for underwater acoustic communication with a short pilot sequence[J]. IEEE Journal of Oceanic Engineering, 2023, 48(2): 526-541. doi: 10.1109/JOE.2022.3225006
    [40]
    Li D, Wu Y, Tao J, et al. Near-Optimal self-iterative VAMP equalization enabled by hadamard-haar random precoding[J]. IEEE Communications Letters, 2020, 24(6): 1249-1253. doi: 10.1109/LCOMM.2020.2981073
    [41]
    Yin J, Ge W, Han X, et al. Partial FFT demodulation with IRC in MIMO-SC-FDE communication over doppler distorted underwater acoustic channels[J]. IEEE Communications Letters, 2019, 23(11): 2086-2090. doi: 10.1109/LCOMM.2019.2937860
    [42]
    徐立军, 鄢社锋, 曾迪, 等. 全海深高速水声通信机设计与试验[J]. 信号处理, 2019, 35(9): 1505-1512.

    Xu Lijun, Yan Shefeng, Zeng Di, et al. Design and trial of the full-depth high-rate underwater acoustic communication modem[J]. Journal of Signal Processing, 2019, 35(9): 1505-1512.
    [43]
    杨健敏, 王佳惠, 乔钢, 等. 水声通信及网络技术综述[J]. 电子与信息学报, 2023, 45(12): 1-22.

    Yang Jianmin, Wang Jiahui, Qiao Gang, et al. Review of underwater acoustic communication and network technology[J]. Journal of Electronics & Information Technology, 2023, 45(12): 1-22.
    [44]
    Costanzi R, Fenucci D, Manzari V, et al. Interoperability among unmanned maritime vehicles: review and first in-field experimentation[J]. Frontiers in Robotics and AI, 2020, 7: 91. doi: 10.3389/frobt.2020.00091
    [45]
    Willett L. Moving the needle[J]. Janes Defence and Intelligence Review, 2023.
    [46]
    乔钢, 刘凇佐, 刘奇佩. 水声通信网络协议、仿真与试验综述[J]. 水下无人系统学报, 2017, 25(3): 151-160.

    Qiao Gang, Liu Songzuo, Liu Qipei. Review of protocols, simulation and experimentation for underwater acoustic communication network[J]. Journal of Unmanned Undersea Systems, 2017, 25(3): 151-160.
    [47]
    沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xinrui, Wang Yanhui, Yang Shaoqiong, et al. Development of underwater gliders: An overview and prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [48]
    陈健瑞, 王景璟, 侯向往, 等. 挺进深蓝: 从单体仿生到群体智能[J]. 电子学报, 2021, 49(12): 2458-2467.

    Chen Jianrui, Wang Jingjing, Hou Xiangwang, et al. Advance into ocean: From bionic monomer to swarm intelligence[J]. Acta Electronica Sinica, 2021, 49(12): 2458-2467.
    [49]
    贾宁, 黄建纯. 水声通信技术综述[J]. 物理, 2014, 43(10): 650-657.

    Jia Ning, Huang Jianchun. An overview of underwater acoustic communications[J]. Physics, 2014, 43(10): 650-657.
    [50]
    严浙平, 曲思瑜, 邢文. 水下图像增强方法研究综述[J]. 智能系统学报, 2022, 17(5): 860-873.

    Yan Zheping, Qu Siyu, Xing Wen. An overview of underwater image enhancement methods[J]. CAAI Transactions on Intelligent Systems, 2022, 17(5): 860-873.
    [51]
    张亦弛, 朱晓强. 基于卷积神经网络的水下目标声呐检测系统[J]. 工业控制计算机, 2022, 35(7): 115-117. doi: 10.3969/j.issn.1001-182X.2022.07.044

    Zhang Yichi, Zhu Xiaoqiang. Similarity algorithm of multiple time series based on convolution nenural network[J]. Industrial Control Computer, 2022, 35(7): 115-117. doi: 10.3969/j.issn.1001-182X.2022.07.044
    [52]
    李昱, 王俊雄. 基于卷积神经网络的 AUV 水下识别算法设计与实现[J]. 舰船科学技术, 2021, 43(4): 155-158.

    Li Yu, Wang Junxiong. Design and implementation of AUV underwater recognition algorithm based on convolutional neural network[J]. Ship Science and Technology, 2021, 43(4): 155-158.
    [53]
    Yu F, He B, Liu J X. Underwater targets recognition based on multiple AUVs cooperative via recurrent transfer-adaptive learning(RTAL)[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 1574-1585. doi: 10.1109/TVT.2022.3211862
    [54]
    魏娜, 刘明雍, 程为彬. 基于D-S证据论的多AUV协同搜索决策[J]. 现代电子技术, 2020, 43(11): 15-19.

    Wei Na, Liu Mingyong, Cheng Weibin. Decision of multi-AUV cooperative search based on D-S evidence theory[J]. Modern Electronics Technique, 2020, 43(11): 15-19.
    [55]
    罗轩. 未知环境下基于蚁群算法的多无人机协同任务决策与规划方法研究[D]. 四川: 电子科技大学, 2023.
    [56]
    Wei W, Wang J, Du J, et al. Differential game-based deep reinforcement learning in underwater target hunting task[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023: 1-15.
    [57]
    Wang Z, Wen Z, Xia Q, et al. Deep reinforcement learning based multi-UUV cooperative control for target capturing[C]//2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress. Edinburgh: IEEE, 2022: 1-6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article Views(86) PDF Downloads(44) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return