• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 32 Issue 4
Aug  2024
Turn off MathJax
Article Contents
XIAO Longzhong, ZHANG Song, LIU Zhenji, ZHAO Yi. Communication Technology of Far-Sea Cross-Domain Buoys Based on High Frequency Sky-Wave Propagation[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 718-723. doi: 10.11993/j.issn.2096-3920.2024-0033
Citation: XIAO Longzhong, ZHANG Song, LIU Zhenji, ZHAO Yi. Communication Technology of Far-Sea Cross-Domain Buoys Based on High Frequency Sky-Wave Propagation[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 718-723. doi: 10.11993/j.issn.2096-3920.2024-0033

Communication Technology of Far-Sea Cross-Domain Buoys Based on High Frequency Sky-Wave Propagation

doi: 10.11993/j.issn.2096-3920.2024-0033
  • Received Date: 2024-02-28
  • Accepted Date: 2024-05-22
  • Rev Recd Date: 2024-04-30
  • Available Online: 2024-07-08
  • High frequency(HF) sky-wave propagation is limited by the working frequency, and the antenna size meeting high gain and adapting to high sea conditions is large, so the application scenario is seriously limited. For the demand of cross-domain long-distance transmission of far-sea science detection information, a cross-domain buoy communication technology integrating HF communication, underwater acoustic communication and unmanned buoy characteristic was proposed. The composition and working principle of far-sea cross-domain transmission buoy devices were introduced, and the working flow was designed. Through the design of a flexible HF antenna with variable length and integrated power amplifier components for water cooling and heat dissipation, the advantages of high antenna gain, strong adaptation to sea conditions, and cross-medium transmission were ensured. The simulation analysis shows that the proposed communication method can effectively guarantee the communication effect and achieve reliable cross-domain long-distance communication of HF signals in high sea conditions and complex interference environments, providing certain technical support for the development of maritime long-distance cross-domain communication.

     

  • loading
  • [1]
    杨会金, 王嘉鑫, 姚武军. 基于声学和无线电通讯的海洋中继浮标技术[J]. 舰船科学技术, 2011, 33(5): 78-81. doi: 10.3404/j.issn.1672-7649.2011.05.018

    YANG H J, WANG J X, YAO W J. Research on ocean relay buoy technology with underwater acoustic and wireless communication[J]. Ship Science and Technology, 2011, 33(5): 78-81. doi: 10.3404/j.issn.1672-7649.2011.05.018
    [2]
    周建清, 郭中源, 贾宁, 等. 无线/水声通信浮标技术研究及其实现[J]. 应用声学, 2012, 31(6): 445-455. doi: 10.11684/j.issn.1000-310X.2012.06.007

    ZHOU J Q, GUO Z Y, JIA N, et al. Studies and implementations of radio/acoustic communication buoy[J]. Applied Acoustics, 2012, 31(6): 445-455. doi: 10.11684/j.issn.1000-310X.2012.06.007
    [3]
    ZHANG S W, YANG W C, XIN Y Z, et al. Prototype system design of mooring buoy for seafloor observation and construction of its communication link[J]. Journal of Coastal Research, 2018, 83: 41-49.
    [4]
    李文彬, 张选明, 李家军, 等. 实时传输潜标平台中的水上通信浮标设计[J]. 海洋技术学报, 2014, 33(5): 47-51.

    LI W B, ZHANG X M, LI J J, et al. Design of the surface communication buoy of the real-time sub-surface mooring system[J]. Journal of Ocean Technology, 2014, 33(5): 47-51.
    [5]
    BERNSTEIN S L, BURROWS M L, EVANS J E, et al. Real-time deep-ocean tsunami measuring, monitoring, and reporting system: The NOAA DART II description and disclosure[R]. US: NOAA, 2005.
    [6]
    饶浩, 梁显锋, 张津舟, 等. 一种轻小型S波段卫星中继通信机的设计与实现[J]. 海洋技术学报, 2019, 38(4): 15-20.

    RAO H, LIANG X F, ZHANG J Z, et al. Design and implementation of a light and small S-band satellite relay transceiver[J]. Journal of Ocean Technology, 2019, 38(4): 15-20.
    [7]
    王金龙. 短波数字通信研究与实践[M]. 北京: 科学出版社, 2013.
    [8]
    ERIC E J, ERIC K, WILLIAM N F, 等. 第三代短波无线电通信[M]. 北京: 国防工业出版社, 2021.
    [9]
    李丽华, 关建新, 王永斌. 关于潜用消耗型短波通信浮标的探讨[J]. 舰船电子工程, 2006, 26(6): 120-122. doi: 10.3969/j.issn.1627-9730.2006.06.036

    LI L H, GUAN J X, WANG Y B. A discussion on some questions of short-wave expendable communications buoy[J]. Ship Electronic Engineering, 2006, 26(6): 120-122. doi: 10.3969/j.issn.1627-9730.2006.06.036
    [10]
    李丽华, 杨路刚, 谢慧. 基于ICECAP的消耗型短波通信浮标选频[J]. 海军工程大学学报, 2007, 19(4): 38-41. doi: 10.3969/j.issn.1009-3486.2007.04.010

    LI L H, YANG L G, XIE H. Frequency selection of short wave expendable communications buoy based on ICECAP[J]. Journal of Naval University of Engineering, 2007, 19(4): 38-41. doi: 10.3969/j.issn.1009-3486.2007.04.010
    [11]
    马璐, 温梦华, 乔钢, 等. 无人水下航行器声通信系统设计与应用[J]. 水下无人系统学报, 2018, 26(5): 449-455.

    MA L, WEN M H, QIAO G, et al. Design and application of acoustic communication system for unmanned undersea vehicle[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 449-455.
    [12]
    曲少春, 郑琨, 王英民. 圆柱形浮标运动分析与仿真[J]. 计算机仿真, 2010, 27(6): 363-367.

    QU S C, ZHENG K, WANG Y M. Analysis and simulation of spar buoy motion[J]. Computer Simulation, 2010, 27(6): 363-367.
    [13]
    张松, 肖龙忠, 陈磊, 等. 一种用于海洋应急信号传输的浮标: ZL2023112996775[P]. 2023-12-29.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article Views(56) PDF Downloads(11) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return