• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 32 Issue 3
Jun  2024
Turn off MathJax
Article Contents
QI Ziyu, LI Haokun, ZHANG Yigan, LIU Huaping, YE Yonghao. Influence of Different Water Depths on Gas Jet of Underwater Scarfed Nozzle[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 542-551. doi: 10.11993/j.issn.2096-3920.2024-0030
Citation: QI Ziyu, LI Haokun, ZHANG Yigan, LIU Huaping, YE Yonghao. Influence of Different Water Depths on Gas Jet of Underwater Scarfed Nozzle[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 542-551. doi: 10.11993/j.issn.2096-3920.2024-0030

Influence of Different Water Depths on Gas Jet of Underwater Scarfed Nozzle

doi: 10.11993/j.issn.2096-3920.2024-0030
  • Received Date: 2024-02-21
  • Accepted Date: 2024-05-07
  • Rev Recd Date: 2024-04-08
  • Available Online: 2024-05-21
  • Thrust vector control by scarfed nozzle jet can realize attitude control and trajectory adjustment of the undersea vehicle and improve the maneuvering performance and stability of the undersea vehicle. In order to investigate the working state of the underwater scarfed nozzle, the Reynolds time-averaged Navier-Stokes(RANS) method and the volume of fluid(VOF) model were used, and simulation of the flow field characteristics and thrust characteristics of the gas jet of the scarfed nozzle under different water depth conditions was carried out. The interaction between the gas jet and the water, as well as the change in the thrust characteristics of the nozzle were analyzed. The results show that the gas bubble forms a gas pocket at the top and a conical gas channel in the near field of the nozzle after four stages of development. The edges of the gas pocket detach under the action of the shear vortex to form a gas cluster. The shape and position of the nozzle wave system vary with the water depth, and the jet boundary is limited by the gas bubble boundary. They interact with each other, leading to the unstable evolution of the jet. The influence of the jet on the wall of the flat plate is asymmetric, with the long side being more affected than the short side. At the same moment, greater water depth indicates a smaller value of the nozzle thrust and more violent fluctuation along the thrust direction. The conclusions can provide a reference for the application of underwater thrust vector nozzles.

     

  • loading
  • [1]
    黄楠, 陈志华, 王争论. 水下超声速气体射流线性稳定性研究[J]. 推进技术, 2021, 42(3): 550-559.
    [2]
    张焕好, 郭则庆, 王瑞琦, 等. 水下超声速气体射流的初始流动特性研究[J]. 振动与冲击, 2019, 38(6): 88-93, 131.
    [3]
    王利利, 刘影, 李达钦, 等. 固体火箭发动机水下超音速射流数值研究[J]. 兵工学报, 2019, 40(6): 1161-1170. doi: 10.3969/j.issn.1000-1093.2019.06.006

    Wang Lili, Liu Ying, Li Daqin, et al. Numerical study of underwater supersonic gas jets for solid rocket engine[J]. Acta Armamentarii, 2019, 40(6): 1161-1170. doi: 10.3969/j.issn.1000-1093.2019.06.006
    [4]
    施红辉, 郭强, 王超, 等. 水下超音速气体射流胀鼓和回击的关联性研究[J]. 力学学报, 2010, 42(6): 1206-1210.

    Shi Honghui, Guo Qiang, Wang Chao, et al. Experiments on the relationship between bulging and back-attack of submerged supersonic gas jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1206-1210.
    [5]
    施红辉, 汪剑锋, 陈帅, 等. 水下超声速气体射流初期流场特性的实验研究[J]. 中国科学技术大学学报, 2014, 44(3): 233-237. doi: 10.3969/j.issn.0253-2778.2014.03.012

    Shi Honghui, Wang Jianfeng, Chen Shuai, et al. Experimental study on flow characteristics at the initial injection stage of underwater supersonic gas jets[J]. Journal of University of Science and Technology of China, 2014, 44(3): 233-237. doi: 10.3969/j.issn.0253-2778.2014.03.012
    [6]
    施红辉, 王柏懿, 戴振卿. 水下超声速气体射流的力学机制研究[J]. 中国科学: 物理学 力学 天文学, 2010, 40(1): 92-100.

    Shi Honghui, Wang Boyi, Dai Zhenqing. Research on the mechanics of underwater supersonic gas jets[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2010, 40(1): 92-100.
    [7]
    王柏懿, 戴振卿, 戚隆溪, 等. 水下超声速气体射流回击现象的实验研究[J]. 力学学报, 2007, 23(2): 267-272. doi: 10.3321/j.issn:0459-1879.2007.02.017

    Wang Boyi, Dai Zhenqing, Qi Longxi, et al. Experimental study on back-attack phenomenon in underwater supersonic gas jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(2): 267-272. doi: 10.3321/j.issn:0459-1879.2007.02.017
    [8]
    张春, 郁伟, 王宝寿. 水下超声速过膨胀燃气射流的流场特性[J]. 航空动力学报, 2022, 37(8): 1633-1642.
    [9]
    唐云龙, 李世鹏. 高速欠膨胀射流结构及推力特征研究[J]. 船舶力学, 2017, 21(10): 1218-1226. doi: 10.3969/j.issn.1007-7294.2017.10.005

    Tang Yunlong, Li Shipeng. Researches on the characteristics of structure and thrust of jets underwater with under-expansion[J]. Journal of Ship Mechanics, 2017, 21(10): 1218-1226. doi: 10.3969/j.issn.1007-7294.2017.10.005
    [10]
    柳文杰, 李冬, 蔡强, 等. 水下点火过程及其影响因素仿真[J]. 火箭推进, 2022, 48(5): 76-83. doi: 10.3969/j.issn.1672-9374.2022.05.010
    [11]
    唐云龙, 李世鹏, 谢侃, 等. 有相变的水下超音速燃气射流数值模拟[J]. 哈尔滨工程大学学报, 2016, 37(9): 1237-1243. doi: 10.11990/jheu.201506010
    [12]
    侯子伟, 黄孝龙, 李宁, 等. 水下高速燃气射流及复杂波系二维数值仿真[J]. 水下无人系统学报, 2020, 28(1): 67-74.

    Hou Ziwei, Huang Xiaolong, Li Ning, et al. Two-dimensional numerical simulation of underwater high-speed gas jet and complex wave system[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 67-74.
    [13]
    Dong P, Fu B, Cheng D. Analysis on the supersonic gas jet submerged in liquid cross flow[J]. Ocean Engineering, 2022, 258: 111822. doi: 10.1016/j.oceaneng.2022.111822
    [14]
    Gong Z X, Lu C J, Li J, et al. The gas jet behaviour in submerged Laval nozzle flow[J]. Journal of Hydrodynamics, Ser. B, 2017, 29(6): 1035-1043. doi: 10.1016/S1001-6058(16)60817-X
    [15]
    Li Y, Jiang Y, Shen L, et al. Experimental investigation on submerged water jet wrapped in an annular gas jet[J]. Physics of Fluids, 2023, 35(1): 012121. doi: 10.1063/5.0135351
    [16]
    Xiang M, Zhao X, Zhou H. Transient dynamic analysis for the submerged gas jet in flowing water[J]. European Journal of Mechanics-B/Fluids, 2021, 85: 351-360. doi: 10.1016/j.euromechflu.2020.09.009
    [17]
    许海雨, 罗凯, 黄闯, 等. 通气超空化对水下火箭发动机性能影响[J]. 哈尔滨工业大学学报, 2021, 53(6): 41-47. doi: 10.11918/201911018
    [18]
    许海雨, 罗凯, 刘富强, 等. 水下超声速射流对上浮水雷受力特性影响研究[J]. 推进技术, 2020, 41(11): 2623-2629.
    [19]
    唐云龙, 李世鹏, 刘筑, 等. 水下固体火箭发动机推力脉动特征研究[J]. 固体火箭技术, 2016, 39(4): 476-481. doi: 10.7673/j.issn.1006-2793.2016.04.005
    [20]
    张小圆, 李世鹏, 杨保雨, 等. 水下固体火箭发动机垂直气体射流结构和推力影响研究[J]. 推进技术, 2021, 42(5): 961-969.
    [21]
    张春, 郁伟, 王宝寿. 水下超声速燃气射流的初期流场特性研究[J]. 兵工学报, 2018, 39(5): 961-968. doi: 10.3969/j.issn.1000-1093.2018.05.016

    Zhang Chun, Yu Wei, Wang Baoshou. Research on the initial flow field characteristics of underwater supersonic gas jets[J]. Acta Armamentarii, 2018, 39(5): 961-968. doi: 10.3969/j.issn.1000-1093.2018.05.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article Views(223) PDF Downloads(24) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return