• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 32 Issue 3
Jun  2024
Turn off MathJax
Article Contents
LUO Kai, QIN Kan, HUANG Chuang, FENG Qixi, LI Daijin, DANG Jianjun. Comparative Analysis of Power Propulsion System Configurations of Air-Water Trans-Medium Torpedoes[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 535-541. doi: 10.11993/j.issn.2096-3920.2024-0018
Citation: LUO Kai, QIN Kan, HUANG Chuang, FENG Qixi, LI Daijin, DANG Jianjun. Comparative Analysis of Power Propulsion System Configurations of Air-Water Trans-Medium Torpedoes[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 535-541. doi: 10.11993/j.issn.2096-3920.2024-0018

Comparative Analysis of Power Propulsion System Configurations of Air-Water Trans-Medium Torpedoes

doi: 10.11993/j.issn.2096-3920.2024-0018
  • Received Date: 2024-02-17
  • Accepted Date: 2024-03-29
  • Rev Recd Date: 2024-03-27
  • Available Online: 2024-05-21
  • At present, the trans-medium torpedoes equipped by foreign military forces are all composed of booster carriers and torpedo warheads. The air-water reusable power propulsion system can integrate the carrier and torpedo into one, which can achieve larger effective underwater attack payloads, long range, and lower life cycle costs, and it has the potential to develop multiple water-entry and exit functions. The air-water reusable power propulsion system is modified based on the conventional torpedo power system, making it capable of air propulsion and multi-mode switching. In this paper, three possible configurations of air-water reusable power propulsion systems were discussed in terms of operating principles, system performance, fuel selection, system control, research and development difficulties, and development potential. It is believed that for light trans-medium torpedoes, the configuration with the single OTTO-II fuel can be used, while for heavy torpedoes, the configuration with kerosene and OTTO-II dual-fuel and dual-combustion chamber system is preferred.

     

  • loading
  • [1]
    冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术[J]. 空军工程大学学报(自然科学版), 2019, 20(3): 8-13.

    Feng Jinfu, Hu Junhua, Qi Duo. Study on development needs and key technologies of air-water trans-media vehicle[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(3): 8-13.
    [2]
    谭骏怡, 胡俊华, 马宗成, 等. 水空跨介质航行器俯冲过程航迹角控制研究[J]. 飞行力学, 2019, 37(1): 34-38, 49.

    Tan Junyi, Hu Junhua, Ma Zongcheng, et al. Research on flight path angle control of trans-media aerial underwater vehicle during diving process[J]. Flight Dynamics, 2019, 37(1): 34-38, 49.
    [3]
    何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016, 38(9): 152-157. doi: 10.3404/j.issn.1672-7619.2016.05.032

    He Zhaoxiong, Zheng Zhenshan, Ma Dongli, et al. Development of foreign trans-media aircraft and its enlightenment to China[J]. Ship Science And Technology, 2016, 38(9): 152-157. doi: 10.3404/j.issn.1672-7619.2016.05.032
    [4]
    刘相知, 崔维成. 潜空两栖航行器的综述与分析[J]. 中国舰船研究, 2019, 14(S2): 1-14.

    Liu Xiangzhi, Cui Weicheng. An overview and analysis of the water-air amphibious vehicles[J]. Chinese Journal of Ship Research, 2019, 14(S2): 1-14.
    [5]
    孙祥仁, 曹建, 姜言清, 等. 潜空跨介质无人航行器发展现状与展望[J]. 数字海洋与水下攻防, 2020, 3(3): 178-184.

    Sun Xiangren, Cao Jian, Jiang Yanqing, et al. Development status of unmanned underwater-aerial cross-domain vehicles[J]. Digital Ocean & Underwater Warfare, 2020, 3(3): 178-184.
    [6]
    Petrov G. Flying submarine[J]. J. fleet, 1955, 52(3): 52-53.
    [7]
    张军, 曹耀初, 高德宝等. 水下-空中跨介质航行器研究进展[C]//中国造船工程学会船舶力学学术委员会第九届全体会议论文集. 无锡: 中国造船工程学会, 2018.
    [8]
    陈建峰, 杨龙塾. 美国DARPA提出的“潜水飞机”概念[J]. 现代舰船, 2009(3): 38-39.
    [9]
    黄安迪. 水空两用发动机燃烧室设计与研究[D]. 南昌: 南昌航空大学, 2014.
    [10]
    Hrishikeshavan V, Bogdanowicz C, Chopra I. Design, performance and testing of a quad rotor biplane micro air vehicle for multi role missions[J]. International Journal of Micro Air Vehicles, 2014, 6(3): 155-173. doi: 10.1260/1756-8293.6.3.155
    [11]
    杨兴帮, 梁建宏, 文力, 等. 水空两栖跨介质无人飞行器研究现状[J]. 机器人, 2018, 40(1): 102-114.

    Yang Xingbang, Liang Jianhong, Wen Li, et al. Research status of water-air amphibious trans-media unmanned vehicle[J]. Robot, 2018, 40(1): 102-114.
    [12]
    史小锋, 党建军, 梁跃, 等. 水下攻防武器能源动力技术发展现状及趋势[J]. 水下无人系统学报, 2021, 29(6): 634-647. doi: 10.11993/j.issn.2096-3920.2021.06.001

    Shi Xiaofeng, Dang Jianjun, Liang Yue, et al. Development status and trend of energy and power technology for underwater attack and defensive weapons[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 634-647. doi: 10.11993/j.issn.2096-3920.2021.06.001
    [13]
    关世义, 冯郅仲. 国外飞航式反潜导弹浅析[J]. 空天技术, 2004(10): 1-6, 9. doi: 10.3969/j.issn.1009-1319.2004.10.001

    Guan Shiyi, Feng Zhizhong. A brief analysis of foreign flying anti-submarine missiles[J]. Aerospace Technology, 2004(10): 1-6, 9. doi: 10.3969/j.issn.1009-1319.2004.10.001
    [14]
    王瀚伟, 罗凯, 黄闯, 等. 空水共用涡轮机气动设计与数值仿真[J]. 兵工学报, 2022, 43(12): 3151-3161. doi: 10.12382/bgxb.2021.0691

    Wang Hanwei, Luo Kai, Huang Chuang, et al. Aerodynamic design and numerical simulation of air-water shared turbines[J]. Acta Armamentarii, 2022, 43(12): 3151-3161. doi: 10.12382/bgxb.2021.0691
    [15]
    张安静, 秦侃, 王瀚伟, 等. 二次燃烧反应对空水两用涡轮机性能影响[J]. 航空动力学报, 2024(39): 1-15.

    Zhang Anjing, Qin Kan, Wang Hanwei, et al. Research on influence of secondary combustion reaction on the performance of air-underwater dual-mode turbines[J]. Journal of Aerospace Power, 2024(39): 1-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article Views(256) PDF Downloads(61) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return