• 中国科技核心期刊
  • JST收录期刊
Turn off MathJax
Article Contents
LIU Pingan, CHU Yue, HUANG Xi, GAO Song, JI Zhentao, ZHOU Xiaohu. Research on numerical calculation of vehicle water exit under different sailing conditions[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0017
Citation: LIU Pingan, CHU Yue, HUANG Xi, GAO Song, JI Zhentao, ZHOU Xiaohu. Research on numerical calculation of vehicle water exit under different sailing conditions[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0017

Research on numerical calculation of vehicle water exit under different sailing conditions

doi: 10.11993/j.issn.2096-3920.2024-0017
  • Received Date: 2024-02-15
  • Accepted Date: 2024-03-18
  • Rev Recd Date: 2024-03-14
  • Available Online: 2024-04-09
  • Vehicle exiting-water process is very complicated, accompanied by multiphase flow, cavitation, phase transition and turbulence instability, and the applied force is highly unsteady and nonlinear. Mostly, studies of vehicle exiting-water with cavitation focus on the vertical or oblique exiting-water internationally, and is focus on the trajectory and attitude of the vehicle.There are few studies on the exiting-water process of the supercavitation vehicle. In this paper, based on STAR-CCM+ software, overlapping grid technology is used to for meshing, VOF model is used to capture the gas-liquid interface, Schnerr-Sauer model describes the cavitation process around the vehicle, and a numerical calculation model of the exiting-water process is established. The flow field and cavitation evolution laws under different conditions that includes initial velocity, initial water depth and ventilate mass flow are obtained, and the hydrodynamic and kinematic characteristics of the supercavitating vehicle are analyzed. The simulation results show that the underwater motion of the vehicle with different initial motion velocity presents two different modes. Under different water depths, the initial cavitation number is different. Cavitation around the vehicle is more likely to rupture in deeper waters. The cavitation morphology can be improved effectively by increasing the ventilation flow rate.

     

  • loading
  • [1]
    Franc J P, Michel J M. Unsteady attached cavitation on an oscillatin hydrofoil[J]. Fluid Mech, 1988, 193(1): 171-189.
    [2]
    Von Karman T, Wattendorf F L. The impact on seaplane floats during landing[J]. NACA TN, 1929, 321: 1-8.
    [3]
    Robertson J M. Hydroballistic calculations of the rise and water exit of buoyant bodies [M]. Columbus: Defense Technical Information Center, 1959.
    [4]
    Moran J P. The vertical water-exit and -entry of slender symmetric bodies[J]. Journal of the Aerospace Sciences, 1961, 28(10): 803-812. doi: 10.2514/8.9194
    [5]
    Greenhow M, Lin W M. Non-linear free surface effects: experiments and theory[R]. MIT, Department of Ocean Engineering, 1983: 83-119.
    [6]
    Greenhow M. Water-entry and-exit of a horizontal circular cylinder[J]. Applied Ocean Research, 1988, 10(4): 191-198. doi: 10.1016/S0141-1187(88)80003-8
    [7]
    Greenhow M, Moyo S. Water entry and exit of horizontal circular cylinders[J]. Philosophical Transactions-Royal Society. Mathematical, physical and engineering sciences, 1997, 355(1724): 551-563. doi: 10.1098/rsta.1997.0024
    [8]
    Nguyen V T, Ha C T, Park W G. Multiphase flow simulation of water-entry and -exit of axisymmetric bodies[C]. In: Proceedings of the ASME 2013, IMECE, 2013, San Diego, California, USA, 2013.
    [9]
    李杰, 鲁传敬, 傅惠萍. 细长回转体出水过程的数值模拟[C]. 第二十届全国水动力学研讨会文集, 2007: 294-299.
    [10]
    鲁传敬, 李杰 . 水下航行器出水空泡溃灭过程及其特性研究 [C]. 第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源教授诞辰 110 周年纪念大会文集 . 无锡 , 2012: 54-67.
    [11]
    刘杰 . 航行体出水过程通气空化流场特性研究 [D]. 哈尔滨: 哈尔滨工业大学 , 2014.
    [12]
    袭祥发. 超空泡导弹潜射出水过程流固耦合数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
    [13]
    田建辉, 胡晨明. 高速弹体出水过程数值模拟[J]. 兵器装备工程学报, 2023, 44(12): 73-78+176. doi: 10.11809/bqzbgcxb2023.12.010

    Tian Jianhui, Hu Chenming. Numerical simulation of high speed projectile discharge process[J]. Journal of Ordnance Equiment Engineering, 2023, 44(12): 73-78+176. doi: 10.11809/bqzbgcxb2023.12.010
    [14]
    Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [15]
    Shih TH, Liou WW, Shabbir A, Yang Z. A new k-epsilon eddy viscosity model for high: reynolds number turbulent flows[J]. Computers Fluids, 1995, 24(3): 227-238. doi: 10.1016/0045-7930(94)00032-T
    [16]
    Sauer J, Schnerr G H. Development of a New Cavitation Model based on Bubble Dynamics[J]. ZAMM Journal of applied mathematics and mechanics, 2001, 81(S3): 561-562. doi: 10.1002/zamm.20010811559
    [17]
    尤天庆, 张嘉钟, 王聪等. 航行体出水过程头部流场载荷特性分析[J]. 北京航空航天大学学报, 2011, 37(5): 610-614.

    You Tianqing, Zhang Jiazhong, Wang Cong, et al. Characteristic analysis of flow load around head duringvehicles exit of water[J]. Journal of Beiiing Uniersity of Aeronautics and Astronautics, 2011, 37(5): 610-614.
    [18]
    Savchenko Y N, Vlasenko Y D, Semenenko V N. Experimental Studies of High-Speed Cavitated Flows[J]. International Journal of Fluid Mechanics Research, 1999, 26(3): 365-374. doi: 10.1615/InterJFluidMechRes.v26.i3.80
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(4)

    Article Metrics

    Article Views(21) PDF Downloads(4) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return