• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 32 Issue 4
Aug  2024
Turn off MathJax
Article Contents
ZHANG Haobo, WANG Biao, HAN Zhaoyue. A Task-Oriented Routing Protocol for Sea-Air Cross-Domain Networks[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 695-702. doi: 10.11993/j.issn.2096-3920.2024-0015
Citation: ZHANG Haobo, WANG Biao, HAN Zhaoyue. A Task-Oriented Routing Protocol for Sea-Air Cross-Domain Networks[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 695-702. doi: 10.11993/j.issn.2096-3920.2024-0015

A Task-Oriented Routing Protocol for Sea-Air Cross-Domain Networks

doi: 10.11993/j.issn.2096-3920.2024-0015
  • Received Date: 2024-02-13
  • Accepted Date: 2024-04-15
  • Rev Recd Date: 2024-04-09
  • Available Online: 2024-06-06
  • Sea-air cross-domain networks consist of underwater and surface subnets. In order to fully utilize resources, enable multiple applications to share the same physical infrastructure, and make different data packets coexist within the same network, differentiated transmission strategies are needed to meet application demands. However, existing routing protocols often fail to provide personalized services based on application requirements. To address this issue, a task-oriented routing protocol for sea-air cross-domain networks was proposed. The protocol adjusted the calculation method of forwarding factors based on the types of tasks, thereby selecting the most suitable next-hop node for specific task types. Furthermore, a preprocessing layer was added to the protocol to facilitate communication between heterogeneous networks. Simulation results show that compared to other typical protocols, the proposed protocol achieves optimal transmission strategies based on specific task requirements.

     

  • loading
  • [1]
    KONG M, KANG C H, ALKHAZRAGI O, et al. Survey of energy-autonomous solar cell receivers for satellite-air-ground-ocean optical wireless communication[J]. Progress in Quantum Electronics, 2020, 74: 100300. doi: 10.1016/j.pquantelec.2020.100300
    [2]
    ENHOS K, DEMIRORS E, UNAL D, et al. Software-defined visible light networking for bi-directional wireless communication across the air-water interface[C]//18th Annual IEEE International Conference on Sensing, Communication, and Networking(SECON). Rome, Italy: IEEE, 2021: 1-9.
    [3]
    CARVER C J, TIAN Z, ZHANG H, et al. Amphilight: Direct air-water communication with laser light[J]. GetMobile: Mobile Computing and Communications, 2021, 24(3): 26-29. doi: 10.1145/3447853.3447862
    [4]
    LUO H, XIE X, HAN G, et al. Multimodal acoustic-RF adaptive routing protocols for underwater wireless sensor networks[J]. IEEE Access, 2019, 7: 134954-134967. doi: 10.1109/ACCESS.2019.2942060
    [5]
    商志刚, 徐晓帆, 梁萱卓, 等. 基于卫星链路的空海跨域通信系统设计[J]. 信息通信技术与政策, 2021(10): 63-67.

    SHANG Z G, XU X F, LIANG X Z, et al. Design of air-sea cross-domain communication system based on satellite links[J]. Information and Communications Technology and Policy, 2021(10): 63-67.
    [6]
    李壮, 孔军, 刘鹏, 等. 水下智能跨域异构网络设计[J]. 舰船科学技术, 2020, 42(23): 137-140.

    LI Z, KONG J, LIU P, et al. Design of underwater intelligent cross domain heterogeneous network[J]. Ship Science and Technology, 2020, 42(23): 137-140.
    [7]
    GUO H, LI J, LIU J, et al. A survey on space-air-ground-sea integrated network security in 6G[J]. IEEE Communications Surveys & Tutorials, 2021, 24(1): 53-87.
    [8]
    QIU T, CHEN N, LI K, et al. Heterogeneous ad hoc networks: architectures, advances and challenges[J]. Ad Hoc Networks, 2017, 55: 143-152. doi: 10.1016/j.adhoc.2016.11.001
    [9]
    罗汉江, 卜凡峰, 王京龙, 等. 海洋物联网水面及水下多模通信技术研究进展[J]. 山东科技大学学报(自然科学版), 2023, 42(1): 79-90.

    LUO H J, BU F F, WANG J L, et al. Research progress of surface and underwater multimodal communication technology of marine internet of things[J]. Journal of Shandong University of Science and Technology(Natural Science), 2023, 42(1): 79-90.
    [10]
    LUO H, WANG J, BU F, et al. Recent progress of air/water cross-boundary communications for underwater sensor networks: A review[J]. IEEE Sensors Journal, 2022, 22(9): 8360-8382. doi: 10.1109/JSEN.2022.3162600
    [11]
    CHEN L K, SHAO Y, DI Y. Underwater and water-air optical wireless communication[J]. Journal of Lightwave Technology, 2022, 40(5): 1440-1452. doi: 10.1109/JLT.2021.3125140
    [12]
    ZHU S, CHEN X, LIU X, et al. Recent progress in and perspectives of underwater wireless optical communication[J]. Progress in Quantum Electronics, 2020, 73: 100274. doi: 10.1016/j.pquantelec.2020.100274
    [13]
    JI Z, FU Y, LI J, et al. Photoacoustic communication from the air to underwater based on low-cost passive relays[J]. IEEE Communications Magazine, 2021, 59(1): 140-143. doi: 10.1109/MCOM.001.2000607
    [14]
    QU F, QIAN J, WANG J, et al. Cross-medium communication combining acoustic wave and millimeter wave: Theoretical channel model and experiments[J]. IEEE Journal of Oceanic Engineering, 2021, 47(2): 483-492.
    [15]
    WANG H, YANG K, ZHENG K, et al. Experimental investigation on electromagnetic wave propagation across sea-to-air interface[C]//2014 Oceans. Taipei: IEEE, 2014: 1-6.
    [16]
    WATSON M C, BOUSQUET J F, FORGET A. Evaluating the feasibility of magnetic induction to cross the air-water boundary[C]//2021 Fifth Underwater Communications and Networking Conference(UComms). Lerici, Italy: IEEE, 2021: 1-4.
    [17]
    PAL A, KANT K. NFMI: Near field magnetic induction based communication[J]. Computer Networks, 2020, 181(9): 107548.
    [18]
    李从改, 刘锋, 徐涴砯, 等. 智能水下应急通信一体化探讨[J]. 数字海洋与水下攻防, 2022, 5(4): 285-292.

    LI C G, LIU F, XU W P, et al. Discussion on integration of intelligent underwater emergency communication[J]. Digital Ocean & Underwater Warfare, 2022, 5(4): 285-292.
    [19]
    LIU J, DU X, CUI J, et al. Task-oriented intelligent networking architecture for the space-air-ground-aqua integrated network[J]. IEEE Internet of Things Journal, 2020, 7(6): 5345-5358. doi: 10.1109/JIOT.2020.2977402
    [20]
    WANG B, ZHANG H, ZHU Y, et al. Adaptive power-controlled depth-based routing protocol for underwater wireless sensor networks[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1567. doi: 10.3390/jmse11081567
    [21]
    WANG Q, DAI H N, WANG Q, et al. On connectivity of UAV-assisted data acquisition for underwater internet of things[J]. IEEE Internet of Things Journal, 2020, 7(6): 5371-5385. doi: 10.1109/JIOT.2020.2979691
    [22]
    PERRONE L F, HENDERSON T R, WATROUS M, et al. The design of an output data collection framework for NS-3[C]//The conference theme for WSC’13 is Simulation: Making Decisions in a Complex World. Washington, D.C., USA: IEEE, 2013: 2984-2995.
    [23]
    YAN H, SHI Z J, CUI J H. DBR: Depth-based routing for underwater sensor networks[C]//networking 2008 Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet: 7th International IFIP-TC6 Networking Conference. Singapore: IFIP Networking Conference, 2008: 72-86.
    [24]
    WAHID A, LEE S, JEONG H J, et al. EEDBER: Energy-efficient depth-based routing protocol for underwater wireless sensor networks[J]. Advanced Computer Science and Information Technology, 2011, 195: 223-234.
    [25]
    WANG Z, HAN G, QIN H, et al. An energy-aware and void-avoidable routing protocol for underwater sensor networks[J]. IEEE Access, 2018, 6: 7792-7801. doi: 10.1109/ACCESS.2018.2805804
    [26]
    MARTIN R, ZHU Y, PU L, et al. Aqua-sim next generation: A NS-3 based simulator for underwater sensor networks[C]//Proceedings of the 10th International Conference on Underwater Networks & Systems. Washington, D.C., USA: Association for Computing Machinery, 2015: 1-2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(140) PDF Downloads(28) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return