• 中国科技核心期刊
  • JST收录期刊
Turn off MathJax
Article Contents
LIANG Xiao, CHEN Cong, LIU Dianyong, YU Changdong, LI Wei. Cooperative Countermeasure Strategy of Sea-Air Cross-Domain Unmanned Platforms For Saturation Attack of Suicide UAVs[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0007
Citation: LIANG Xiao, CHEN Cong, LIU Dianyong, YU Changdong, LI Wei. Cooperative Countermeasure Strategy of Sea-Air Cross-Domain Unmanned Platforms For Saturation Attack of Suicide UAVs[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0007

Cooperative Countermeasure Strategy of Sea-Air Cross-Domain Unmanned Platforms For Saturation Attack of Suicide UAVs

doi: 10.11993/j.issn.2096-3920.2024-0007
  • Received Date: 2024-01-17
  • Accepted Date: 2024-03-12
  • Rev Recd Date: 2024-03-08
  • Available Online: 2024-03-25
  • Aiming at the problem of anti-suicide unmanned aerial vehicle saturation attacks in the marine environment, this paper studies the cooperative countermeasure strategy of sea and air cross-domain unmanned platforms under the condition that the number of targets far exceeds ours, and proposes a cooperative algorithm combining improved genetic algorithm and coalition formation game. Firstly, according to the sea-air cross-domain unmanned platform's attack characteristics and motion characteristics, the cost function is designed by combining the maximum and minimum strategies. Then, the genetic algorithm is improved according to the task requirements, the crossover and mutation processes are guided and restricted, and a feasible countermeasure scheme is generated based on improving the efficiency of the genetic algorithm. Finally, the coalition formation rules are designed, and the coalitions reach Nash stability through changing members between the coalitions. The countermeasure scheme can still be continuously and stably optimized for many operators. Simulation comparison experiments show that the proposed strategy is feasible and superior and can provide a reasonable and efficient countermeasure scheme when the target is subjected to a saturation attack. This can provide a reference for large-scale cross-domain unmanned swarm combat research.

     

  • loading
  • [1]
    陈士涛, 李大喜, 孙鹏, 等. 美军智能无人机集群作战样式及影响分析[J]. 中国电子科学研究院学报, 2021, 16(11): 1113-1118. doi: 10.3969/j.issn.1673-5692.2021.11.006

    Chen Shitao, Li Daxi, Sun Peng, et al. Analysis on the development and influence of intelligent unmanned aerial vehicle cluster in U. S. army[J]. Journal of CAEIT, 2021, 16(11): 1113-1118. doi: 10.3969/j.issn.1673-5692.2021.11.006
    [2]
    Jordan J. The future of unmanned combat aerial vehicles: An analysis using the three horizons framework[J]. Futures, 2021, 134: 102848. doi: 10.1016/j.futures.2021.102848
    [3]
    Kiick D M. Unmanned vehicle mission-level autonomy applications to the littoral combat ship[J]. Johns Hopkins APL Technical Digest, 2012, 31(2): 175-178.
    [4]
    唐俊林, 张栋, 王孟阳, 等. 改进链式多种群遗传算法的防空火力任务分配[J]. 哈尔滨工业大学学报, 2022, 54(6): 19-27. doi: 10.11918/202101056

    Tang Junlin, Zhang Dong, Wang Mengyang, et al. Air defense firepower task assignment based on improved chainlike multi-population genetic algorithm[J]. Journal of Harbin Institute of Technology, 2022, 54(6): 19-27. doi: 10.11918/202101056
    [5]
    Hua X, Wang Z, Yao H J, et al. Research on many-to-many target assignment for unmanned aerial vehicle swarm in three-dimensional scenarios[J]. Computers and Electrical Engineering, 2021, 91: 107067. doi: 10.1016/j.compeleceng.2021.107067
    [6]
    常雪凝, 石建迈, 陈超, 等. 基于匈牙利-模拟退火算法的多阶段武器目标分配方法[J]. 系统工程与电子技术, 2023, 45(11): 3516-3523.

    Chang Xuening, Shi Jianmai, Chen Chao, et al. Multi-stage weapon target assignment method based on the integrating of Hungarian and simulated annealing algorithms[J]. Systems Engineering and Electronics, 2023, 45(11): 3516-3523.
    [7]
    Ramirez-Atencia C, Camacho D. Constrained multi-objective optimization for multi-UAV planning[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(6): 2467-2484. doi: 10.1007/s12652-018-0930-0
    [8]
    Ye F, Chen J, Tian Y, et al. Cooperative task assignment of a heterogeneous multi-UAV system using an adaptive genetic algorithm[J]. Electronics, 2020, 9(4): 687. doi: 10.3390/electronics9040687
    [9]
    Liao W, Wei X H, Lai J Z. Minmax fuzzy deterministic policy gradient for zero-sum differential game: Take pursuit-evasion problem as example[J]. Journal of Intelligent & Fuzzy Systems, 2021, 41(1): 1069-1082.
    [10]
    Tanuja L A, Kanth R J. Multi labeled imbalanced data classification based on advanced min-max machine learning[J]. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2019, 9(1): 1776-1778. doi: 10.35940/ijitee.L3718.119119
    [11]
    马金慧, 杨玉, 李存华, 等. 基于交叉熵-遗传算法的武器目标分配问题研究[J]. 南京师范大学学报(工程技术版), 2021, 41(1): 68-74.

    Ma Jinhui, Yang Yu, Li Cunhua, et al. Research on weapon target assignment problem based on cross entropy-genetic algorithm[J]. Journal of Nanjing Normal University(Engineering and Technology Edition), 2021, 41(1): 68-74.
    [12]
    王庆贺, 万刚, 柴峥, 等. 基于改进遗传算法的多机协同多目标分配方法[J]. 计算机应用研究, 2018, 35(9): 2597-2601. doi: 10.3969/j.issn.1001-3695.2018.09.008

    Wang Qinghe, Wan Gang, Chai Zheng, et al. Multiple targets assignment of multiple UAVs’cooperation based on improved genetic algorithm[J]. Application Research of Computers, 2018, 35(9): 2597-2601. doi: 10.3969/j.issn.1001-3695.2018.09.008
    [13]
    郑士源. 合作博弈理论的研究进展——联盟的形成机制及稳定性研究综述[J]. 上海海事大学学报, 2011, 32(4): 53-59. doi: 10.3969/j.issn.1672-9498.2011.04.011

    Zhen Shiyuan. Advance study on cooperative game theory: Review on study of formation mechanism and stability of coalition[J]. Journal of Shanghai Maritime University, 2011, 32(4): 53-59. doi: 10.3969/j.issn.1672-9498.2011.04.011
    [14]
    陈侠, 赵明明, 徐光延. 基于合作联盟的多无人机对地攻防对抗策略[J]. 兵工自动化, 2014, 33(1): 49-55. doi: 10.7690/bgzdh.2014.01.015

    Chen Xia, Zhao Mingming, Xu Guangyan. Multiple UAV Operation Strategy Attack-Defense Confrontation to Ground Based on Cooperative Alliance[J]. Ordnance Industry Automation, 2014, 33(1): 49-55. doi: 10.7690/bgzdh.2014.01.015
    [15]
    Yang X M, Luo H, Sun Y, et al. Coalitional game-based cooperative computation offloading in MEC for reusable tasks[J]. IEEE Internet of Things Journal, 2021, 8(16): 12968-12982. doi: 10.1109/JIOT.2021.3064186
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(8) PDF Downloads(4) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return