• 中国科技核心期刊
  • JST收录期刊
Turn off MathJax
Article Contents
LI Yuanzheng, WANG Tianrun, GUAN Tangzhen, XU Peng, WANG Hao, XU Minyi. Research on Liquid metal-based Triboelectric Whisker Sensor[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0125
Citation: LI Yuanzheng, WANG Tianrun, GUAN Tangzhen, XU Peng, WANG Hao, XU Minyi. Research on Liquid metal-based Triboelectric Whisker Sensor[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0125

Research on Liquid metal-based Triboelectric Whisker Sensor

doi: 10.11993/j.issn.2096-3920.2023-0125
  • Received Date: 2023-10-14
  • Accepted Date: 2023-11-23
  • Rev Recd Date: 2023-11-19
  • Available Online: 2024-02-07
  • To enhance the maneuverability and adaptability of underwater robots, it is essential to improve their perception of the surrounding environment. Inspired by the hair follicle structure of animal whiskers, this paper proposes a liquid metal-based triboelectric whisker sensor (LTWS) combined with liquid metal-based triboelectric nanogenerators. This sensor serves as a supplement to optical and acoustic perception technologies for underwater robots in turbid water with low visibility, enhancing the robots' information perception capabilities. The LTWS mainly consists of carbon fiber whiskers, silicone sheaths, triggers, shape memory alloy springs, sensing units, and a base. The subtle deflection of the carbon fiber whiskers drives the trigger to approach and squeeze the corresponding direction of the sensing unit, thereby generating an electric signal. The sensing signal of LTWS has a linear relationship with the lateral displacement of the tentacles, and the sensitivity can reach 7.9 mV/mm. It is worth mentioning that the touch frequency has a small impact on the output signal. LTWS enriches the perception methods of underwater robots, providing a new approach for marine information perception.

     

  • loading
  • [1]
    许欣欣. 海洋监测技术发展现状研究及应用[J]. 中国战略新兴产业, 2018, 24(6): 180.
    [2]
    Balasuriya A, Ura T. Vision-based underwater cable detection and following using AUVs[C]//Oceans’02 MTS/IEEE. Biloxi, MI, USA: IEEE, 2002.
    [3]
    Zhou M, Bachmayer R, De Young B. Underwater acoustic-based navigation towards multi-vehicle operation and adaptive oceanographic sampling[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE, 2017.
    [4]
    胡瀚文, 王猛, 程卫平, 等. 水下视觉SLAM的图像滤波除尘与特征增强算法[J]. 机器人, 2023, 45(2): 10. doi: 10.13973/j.cnki.robot.210406
    [5]
    Lythgoe J N, Hemmings C C. Polarized light and underwater vision[J]. Nature, 1967, 213(5079): 893-894. doi: 10.1038/213893a0
    [6]
    Kou S, Feng X, Bi Y, et al. High-resolution angle-Doppler imaging by sparse recovery of underwater acoustic signals[J]. Chinese Journal of Acoustics, 2020, 39(2): 133-150.
    [7]
    Muscolo G G, Cannata G. A novel tactile sensor for underwater applications: Limits and perspectives[C]//OCEANS 2015-Genova. IEEE, 2015: 1-7.
    [8]
    Xu P, Liu J, Liu X, et al. A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception[J]. npj Flexible Electronics, 2022, 6(1): 252-261.
    [9]
    Asadnia M, Kottapalli A G P, Miao J, et al. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena[J]. Journal of the Royal Society Interface, 2015, 12(111): 20150322. doi: 10.1098/rsif.2015.0322
    [10]
    Tan D, Wang Q, Song R, et al. Optical fiber based slide tactile sensor for underwater robots[J]. Journal of Marine Science and Application, 2008, 7(2): 122-126. doi: 10.1007/s11804-008-7055-3
    [11]
    徐鹏, 刘建华, 谢广明, 等. 基于柔性摩擦纳米发电机的水下仿生胡须传感器研究[J]. 兵工自动化, 2022, 41(12): 20-24.
    [12]
    Wettels N, Parnandi A R, Moon J H, et al. Grip control using biomimetic tactile sensing systems[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(6): 718-723. doi: 10.1109/TMECH.2009.2032686
    [13]
    Iskarous M M, Thakor N V. E-skins: Biomimetic sensing and encoding for upper limb prostheses[J]. Proceedings of the IEEE, 2019, 107(10): 2052-2064. doi: 10.1109/JPROC.2019.2939369
    [14]
    Xin Y, Tian H, Guo C, et al. A biomimetic tactile sensing system based on polyvinylidene fluoride film[J]. Review of Scientific Instruments, 2016, 87(2): 025002-1-025002-9. doi: 10.1063/1.4941736
    [15]
    Göpel W. New materials and transducers for chemical sensors[J]. Sensors and Actuators B:Chemical, 1994, 18(1-3): 1-21. doi: 10.1016/0925-4005(94)87049-7
    [16]
    Chen H, Xu Y, Bai L, et al. Optimization of contact-mode triboelectric nanogeneration for high energy conversion efficiency[J]. Science China Information Sciences, 2018, 61(6): 78-86.
    [17]
    Yoo D, Lee S, Lee J W, et al. Reliable DC voltage generation based on the enhanced performance triboelectric nanogenerator fabricated by nanoimprinting-poling process and an optimized high efficiency integrated circuit[J]. Nano Energy, 2020, 69: 104388. doi: 10.1016/j.nanoen.2019.104388
    [18]
    Dharmasena R, Silva S R P. Towards optimized triboelectric nanogenerators[J]. Nano Energy, 2019, 62: 530-549. doi: 10.1016/j.nanoen.2019.05.057
    [19]
    Dickey M D, Chiechi R C, Larsen R J, et al. Eutectic gallium‐indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature[J]. Advanced Functional Materials, 2008, 18(7): 1097-1104. doi: 10.1002/adfm.200701216
    [20]
    TAKAMICHI II DA. 液态金属的物理性能[M]. 北京: 科学出版社, 2006.
    [21]
    飯田孝道, 罗格里克·格斯里, Guthrie, 等. 液态金属的物 理性能[M]. 北京: 科学出版社, 2006.
    [22]
    Szymak P, Praczyk T, Naus K, et al. Research on biomimetic underwater vehicles for underwater ISR[C]//Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VII. Baltimore, MD, United States: SPIE, 2016.
    [23]
    Kruusmaa M, Fiorini P, Megill W, et al. Filose for svenning: A flow sensing bioinspired robot[J]. IEEE Robotics & Automation Magazine, 2014, 21(3): 51-62.
    [24]
    Guo S, Shi L. A multifunctional underwater biomimetic microrobot[J]. Robot Fish: Bio-inspired Fishlike Underwater Robots, 2015: 285-313.
    [25]
    Xu P, Zheng J, Liu J, et al. Deep-Learning-Assisted Underwater 3D Tactile Tensegrity[J]. Research, 2023, 6: 0062. doi: 10.34133/research.0062
    [26]
    Niu S, Wang S, Lin L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J]. Energy & Environmental Science, 2013, 6(12): 3576-3583.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article Views(18) PDF Downloads(6) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return