• 中国科技核心期刊
  • JST收录期刊
Volume 32 Issue 1
Feb  2024
Turn off MathJax
Article Contents
MA Yuyin, WANG Yanfeng, GUAN Sheng, WANG Na, DING Junhang. Motion Control Simulation of Underwater Gliders in Kuroshio[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 1-7. doi: 10.11993/j.issn.2096-3920.2023-0086
Citation: MA Yuyin, WANG Yanfeng, GUAN Sheng, WANG Na, DING Junhang. Motion Control Simulation of Underwater Gliders in Kuroshio[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 1-7. doi: 10.11993/j.issn.2096-3920.2023-0086

Motion Control Simulation of Underwater Gliders in Kuroshio

doi: 10.11993/j.issn.2096-3920.2023-0086
  • Received Date: 2023-07-13
  • Accepted Date: 2023-09-04
  • Rev Recd Date: 2023-08-26
  • Available Online: 2023-12-11
  • In recent years, underwater gliders have been widely used in the observation of various ocean surveys. However, their motion is often seriously affected when observing strong currents such as the Kuroshio. Therefore, the motion control of underwater gliders in the Kuroshio was studied in this paper. First, with Petrel-II as the research object, a dynamics model considering the Kuroshio was established based on the momentum and momentum moment theorem. Then, the Kuroshio data downloaded from the HYCOM website was used as interference, which featured varying speeds and directions of Kuroshio at different positions, and Simulink was used to simulate the motion of the Petrel-II under the influence of strong currents. Finally, the radial basis function(RBF) neural network was combined with the conventional proportional-integral-derivative(PID) controller to control the yaw motion and trim motion of the Petrel-II. The simulation results show that the RBF-PID controller can improve the motion tracking accuracy of Petrel-II in the Kuroshio area and enhance its ability to resist the interference of the Kuroshio. This study can provide a reference for the motion control of underwater gliders under the influence of strong currents to some extent.

     

  • loading
  • [1]
    Webb D C, Simonetti P J, Jones C P. SLOCUM: An underwater glider propelled by environmental energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452. doi: 10.1109/48.972077
    [2]
    Eriksen C C, Osse T J, Light R D, et al. Seaglider: A long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436. doi: 10.1109/48.972073
    [3]
    杨绍琼, 李元昊, 孙通帅, 等. “海燕”号谱系化水下滑翔机技术发展与应用[J]. 水下无人系统学报, 2023, 31(1): 68-85.

    Yang Shaoqiong, Li Yuanhao, Sun Tongshuai, et al. Development and application of Petrel serialized underwater glider technologies[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 68-85.
    [4]
    褚福硕, 司宗尚, 庞重光, 等. 海翼水下滑翔机测流应用[J]. 海洋科学, 2022, 4 6(5): 10-16.

    Chu Fushuo, Si Zongshang, Pang Chongguang, et al. Sea Wing underwater glider depth average current[J]. Marine Science, 2022, 46(5): 10-16.
    [5]
    Fan S, Woolsey C A. Dynamics of underwater gliders in currents[J]. Ocean Engineering, 2014, 84: 249-258. doi: 10.1016/j.oceaneng.2014.03.024
    [6]
    Bhatta P, Leonard N E. Stabilization and coordination of underwater gliders[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, NV, USA: IEEE, 2002: 2081-2086.
    [7]
    Su Z, Zhou M, Han F, et al. Attitude control of underwater glider combined reinforcement learning with active disturbance rejection control[J]. Journal of Marine Science and Technology, 2019, 24: 686-704. doi: 10.1007/s00773-018-0582-y
    [8]
    Zhou H, Fu J, Zeng Z, et al. Adaptive robust tracking control for underwater gliders with uncertainty and time-varying input delay[J]. Ocean Engineering, 2021, 240: 109945. doi: 10.1016/j.oceaneng.2021.109945
    [9]
    秦悦, 王冠琳, 官晟, 等. 水下滑翔机中尺度过程空间采样运动仿真[J]. 水下无人系统学报, 2022, 30(4): 474-484, 513. doi: 10.11993/j.issn.2096-3920.202112003

    Qin Yue, Wang Guanlin, Guan Sheng, et al. Motion simulation of spatial sampling of mesoscale processes for underwater gliders[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 474-484, 513. doi: 10.11993/j.issn.2096-3920.202112003
    [10]
    张福斌, 汪刚, 陈宇航, 等. 水下滑翔机建模与运动PID控制[J]. 鱼雷技术, 2011, 19(2): 114-119.

    Zhang Fubin, Wang Gang, Chen Yuhang, et el. Modeling and PID control of underwater glider motion[J]. Torpedo Technology, 2011, 19(2): 114-119.
    [11]
    Wang Y, Niu W, Yu X, et al. Quantitative evaluation of motion performances of underwater gliders considering ocean currents[J]. Ocean Engineering, 2021, 236: 109501. doi: 10.1016/j.oceaneng.2021.109501
    [12]
    Yu L, Xiong X, Guo Y. Analysis of the path and axis features of the Kuroshio at the depth of 15 m based on drifting buoy data[J]. Advances in Marine Science, 2014, 32(2): 316-323.
    [13]
    陈弈煿, 张润锋, 杨绍琼, 等. 基于参数自整定PID的水下滑翔机航向控制方法[J]. 重庆大学学报, 2022, 45(8): 26-33.

    Chen Yibo, Zhang Runfeng, Yang Shaoqiong, et al. A steering control method of underwater glider based on parameters self-tuning PID[J]. Journal of Chongqing University, 2022, 45(8): 26-33.
    [14]
    甘顺顺, 许宝杰, 黄小龙. 基于RBF神经网络的四旋翼无人机姿态控制[J]. 装备制造技术, 2021, 320(8): 28-35. doi: 10.3969/j.issn.1672-545X.2021.08.009

    Gan Shunshun, Xu Baojie, Huang Xiaolong. An attitude control of quad rotor UAV based on RBF neural network[J]. Equipment Manufacturing Technology, 2021, 320(8): 28-35. doi: 10.3969/j.issn.1672-545X.2021.08.009
    [15]
    常志东. 神经网络优化PID的舰船关键设备智能控制方法[J]. 舰船科学技术, 2022, 44(21): 168-171. doi: 10.3404/j.issn.1672-7649.2022.21.035

    Chang Zhidong. Intelligent control method of ship key equipment based on neural network optimization PID[J]. Ship Science and Technology, 2022, 44(21): 168-171. doi: 10.3404/j.issn.1672-7649.2022.21.035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article Views(945) PDF Downloads(42) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return