• 中国科技核心期刊
  • JST收录期刊
Turn off MathJax
Article Contents
CHEN Tao, WAN Shou. Dynamic Path Generation Method for UUV Terrain Tracking Using Forward-Looking and Altimetry Sonar[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0047
Citation: CHEN Tao, WAN Shou. Dynamic Path Generation Method for UUV Terrain Tracking Using Forward-Looking and Altimetry Sonar[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0047

Dynamic Path Generation Method for UUV Terrain Tracking Using Forward-Looking and Altimetry Sonar

doi: 10.11993/j.issn.2096-3920.2023-0047
  • Received Date: 2023-05-08
  • Rev Recd Date: 2023-06-30
  • Available Online: 2024-01-18
  • Maintaining fixed altitude tracking navigation of seafloor terrain is a common form of motion, which is used by unmanned undersea vehicle(UUV) on marine survey and underwater target search missions, the core of this motion is how UUV can detect unknown undulating seafloor terrain in real time, and generate tracking paths online and dynamically based on detection information, so as to achieve fixed altitude tracking navigation on the terrain while avoiding collision with the terrain. In this paper, to solve the above problems, a method is proposed, which is of detecting terrain information based on forward looking sonar, and dynamically generating tracking path based on polynomial fitting. First, UUV uses forward looking sonar to conduct real-time detection of seafloor terrain. After affine processing of the obtained terrain detection data, fixed-height affine data with discrete characteristics can be obtained. Then, the cubic polynomial method based on least squares criterion is used to fit the affine data, and the navigation path of UUV terrain tracking based on polynomial function description is generated. Finally, a dynamic execution framework including sonar detection, data affine, path generation and tracking control is designed, in order to realize the real-time terrain tracking navigation mission of UUV. In this paper, through simulation of tracking on typical seafloor 'uphill' and 'mountainous' terrain, effectiveness and feasibility of the proposed tracking path generation and dynamic execution framework were demonstrated.

     

  • loading
  • [1]
    钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(上)——美军用无人系统发展规划分析解读[J]. 水下无人系统学报, 2017, 25(2): 1-30.

    Qian Dong, Zhao Jiang, Yang Yun. Development trend of military UUV(Ⅰ): A review of U. S. military unmanned system development plan[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 1-30.
    [2]
    Silvestre C, Cunha R, Paulino N, et al. A bottom-following preview controller for autonomous underwater vehicles[J]. IEEE Transactions on Control Systems Technology, 2008, 17(2): 257-266.
    [3]
    Melo J, Matos A. Bottom estimation and following with the MARES AUV[C]. Oceans. IEEE, 2012: 1-8.
    [4]
    Adhamimirhosseini A, Yazdanpanah M J, Aguiar A P. Automatic bottom-following for underwater robotic vehicles[J]. Automatica, 2014, 50(8): 2155-2162. doi: 10.1016/j.automatica.2014.06.003
    [5]
    Kim K, Ura T. Terrain-adaptive optimal guidance for near-bottom survey by an autonomous underwater vehicle[C]// 2013 IEEE International Underwater Technology Symposium. Tokyo, Japan: IEEE, 2013.
    [6]
    徐红丽, 陈巩. 基于传感器信息的AUV海底地形跟踪研究[J]. 自动化与仪表, 2016, 31(6): 5-9.

    Xu Hongli, Chen Gong. Autonomous underwater vehicle undersea bottom-following based on sensor information[J]. Automation & Instrumentation, 2016, 31(6): 5-9.
    [7]
    李岳明, 万磊, 孙玉山, 等. 水下机器人高度信息融合与欠驱动地形跟踪控制[J]. 控制理论与应用, 2013, 30(1): 118-122.

    Li Yueming, Wan Lei, Sun Yushan, et al. Altitude information fusion and bottom-following control for underactuated autonomous underwater vehicle[J]. Control Theory & Applications, 2013, 30(1): 118-122.
    [8]
    周易. UUV地形跟踪安全性评估及航行模式切换控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
    [9]
    夏正亚, 洪亮. 基于多项式拟合插值函数的码垛机器人轨迹规划[J]. 山东科学, 2016, 29(5): 117-123.

    Xia Zhengya, Hong Liang. Polynomial fitting interpolation function based trajectory planning for a palletizing robot[J]. Shandong Science, 2016, 29(5): 117-123.
    [10]
    李践飞, 周智勇, 牛玉杰. 潜艇垂直面运动标准化仿真模型研究[J]. 船电技术, 2009, 29(3): 53-56.

    Li Jianfei, Zhou Zhiyong, Niu Yujie. Standardization of submarine vertical movement simulation model[J]. Marine Electric & Electronic Engineering, 2009, 29(3): 53-56.
    [11]
    瞿佳伟, 张春雷, 张冀. 基于NSGA-Ⅱ和最小二乘原理的加工轨迹拟合算法[J]. 精密制造与自动化, 2019(2): 25-28, 52.

    Qu Jia-wei, Zhang Chun-lei, Zhang Yi. Machining trajectory fitting algorithm based on NSGA-Ⅱ and least squares principle[J]. Precise Manufacturing & Automation, 2019(2): 25-28, 52.
    [12]
    姚连璧, 钱瑾斐. 基于移动最小二乘法的轨迹拟合切线方位角计算[J]. 同济大学学报(自然科学版), 2018, 46(11): 1589-1593.

    Yao Lianbi, Qian Jinfei. Trajectory tangent azimuth calculation based on moving least square fitting[J]. Journal of Tongji University(Natural Science), 2018, 46(11): 1589-1593.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(15) PDF Downloads(0) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return