• 中国科技核心期刊
  • JST收录期刊
Volume 32 Issue 1
Feb  2024
Turn off MathJax
Article Contents
WANG Jieru, LI Chong, QI Shengbo, ZHAO Yuanyuan. Lightweight Modeling of Underwater Gliders and Nonlinear MPC Controller Design with Actuator Constraint[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 8-17. doi: 10.11993/j.issn.2096-3920.2023-0042
Citation: WANG Jieru, LI Chong, QI Shengbo, ZHAO Yuanyuan. Lightweight Modeling of Underwater Gliders and Nonlinear MPC Controller Design with Actuator Constraint[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 8-17. doi: 10.11993/j.issn.2096-3920.2023-0042

Lightweight Modeling of Underwater Gliders and Nonlinear MPC Controller Design with Actuator Constraint

doi: 10.11993/j.issn.2096-3920.2023-0042
  • Received Date: 2023-04-20
  • Accepted Date: 2023-06-05
  • Rev Recd Date: 2023-05-11
  • Available Online: 2024-01-11
  • In response to the problems of high nonlinearity and dimensionality of existing underwater glider models, as well as difficulty in designing effective engineering controllers, the composition and working principle of the motion mechanism of underwater gliders were first studied. By neglecting secondary influencing factors in the modeling process, lightweight modeling of underwater gliders was conducted to reduce model nonlinearity and complexity. The effectiveness of the lightweight model was demonstrated through comparative verification. Subsequently, according to the motion in the vertical plane, the dynamic equation was further simplified, and the advantages of low dimension and small calculation amount of the model were brought into play. The actual constraints of state and control variables were introduced, and a realistic predictive attitude control algorithm for a real-time linearized model was designed. The numerical simulation results show that under the two common working conditions of ±17.4° and ±22.5° for underwater gliders, the control algorithm based on the lightweight model proposed in this paper can quickly track the desired attitude, and the rise time and steady-state settling time are improved by more than 70% compared with traditional controllers.

     

  • loading
  • [1]
    吴尚尚, 李阁阁, 兰世泉, 等. 水下滑翔机导航技术发展现状与展望[J]. 水下无人系统学报, 2019, 27(5): 529-540.

    Wu Shangshang, Li Gege, Lan Shiquan, et al. Present situation and prospect of navigation technologies for underwater glider[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 529-540.
    [2]
    刁宏伟, 李宗吉, 王世哲, 等. 水下滑翔机研究现状及发展趋势[J]. 舰船科学技术, 2001, 44(6): 8-12.

    Diao Hongwei, Li Zongji, Wang Shizhe, et al. The research status and development trend of underwater glider[J]. Ship Science and Technology, 2001, 44(6): 8-12.
    [3]
    Leonard N E. Control synthesis and adaptation for an underactuated autonomous underwater vehicle[J]. IEEE Journal of Oceanic Engineering, 1995, 20(3): 211-220. doi: 10.1109/48.393076
    [4]
    Leonard N E, Graver J G. Model-based feedback control of autonomous underwater gliders[J]. IEEE Journal of oceanic engineering, 2001, 26(4): 633-645. doi: 10.1109/48.972106
    [5]
    Graver J G. Underwater gliders: Dynamics, control and design[D]. Princeton, USA: Princeton University, 2005.
    [6]
    侯巍, 王树新, 张海根. 小型水下自航行器动力学建模与控制[J]. 天津大学学报: 自然科学与工程技术版, 2004, 37(9): 769-773.

    Hou Wei, Wang Shuxin, Zhang Haigen. Dynamic modeling and control for miniature autonomous underwater vehicle[J]. Journal of Tianjin University: Science and Technology, 2004, 37(9): 769-773.
    [7]
    Song Y, Ye H, Wang Y, et al. Energy consumption modeling for underwater gliders considering ocean currents and seawater density variation[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1164. doi: 10.3390/jmse9111164
    [8]
    范双双. 洋流影响下的水下滑翔机动力学建模、运动分析与控制器设计研究[D]. 浙江: 浙江大学, 2013.
    [9]
    Mahmoudian N, Woolsey C. Analysis of feedforward/feedback control design for underwater gliders based on slowly varying systems theory[C]//AIAA Guidance, Navigation, and Control Conference. Chicago, U. S.: AIAA, 2009.
    [10]
    Tchilian R D S, Rafikova E, Gafurov S A. Optimal control of an underwater glider vehicle[J]. Procedia Engineering, 2017, 176: 732-740. doi: 10.1016/j.proeng.2017.02.322
    [11]
    Wang Z, Yu C, Li M, et al. Vertical profile diving and floating motion control of the underwater glider based on fuzzy adaptive LADRC algorithm[J]. Journal of Marine Science and Engineering, 2021, 9(7): 698. doi: 10.3390/jmse9070698
    [12]
    孙秀军. 混合驱动水下滑翔器动力学建模及运动控制研究[D]. 天津: 天津大学, 2011.
    [13]
    严升, 张润锋, 杨绍琼, 等. 水下滑翔机纵垂面变浮力过程建模与控制优化[J]. 中国机械工程, 2022, 33(1): 109-117.

    Yan Sheng, Zhang Runfeng, Yang Shaoqiong, et al. Modelling and control optimization for underwater gliders of variable buoyancy processes in vertical plane[J]. China Mechanical Engineering, 2022, 33(1): 109-117.
    [14]
    李志超, 乔岳坤. 飞翼式水下滑翔机的性能分析与控制策略优化[J]. 哈尔滨工程大学学报, 2022, 43(1): 151-158.

    Li Zhichao, Qiao Yuekun. Performance analysis and motion control for a flying wing underwater glider[J]. Journal of Harbin Engineering University, 2022, 43(1): 151-158.
    [15]
    陈弈煿, 张润锋, 杨绍琼, 等. 基于参数自整定 PID 的水下滑翔机航向控制方法[J]. 重庆大学学报, 2022, 45(8): 26-33.

    Chen Yibo, Zhang Runfeng, Yang Shaoqiong, et al. A steering control method of underwater glider based on parameter self-tuning PID[J]. Journal of Chongqing University, 2022, 45(8): 26-33.
    [16]
    Zhang S, Yu J, Zhang A, et al. Spiraling motion of underwater gliders: Modeling, analysis, and experimental results[J]. Ocean Engineering, 2013, 60: 1-13. doi: 10.1016/j.oceaneng.2012.12.023
    [17]
    朱芮, 吴迪, 陈继峰, 等. 电机系统模型预测控制研究综述[J]. 电机与控制应用, 2019, 46(8): 1-10.

    Zhu Rui, Wu Di, Chen Jifeng, et al. A review of research on motor system model predictive control[J]. Electric Machines & Control Application, 2019, 46(8): 1-10.
    [18]
    周丽芹, 傅金辉, 宋大雷, 等. 基于高阶干扰观测器的水下滑翔机迭代学习控制[J]. 现代电子技术, 2022, 45(23): 97-104.

    Zhou Liqin, Fu Jinhui, Song Dalei, et al. High-order disturbance observer based iterative learning control of underwater glider[J]. Modern Electronics Technique, 2022, 45(23): 97-104.
    [19]
    Todd R E, Rudnick D L, Sherman J T, et al. Absolute velocity estimates from autonomous underwater gliders equipped with Doppler current profilers[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 309-333. doi: 10.1175/JTECH-D-16-0156.1
    [20]
    Mendiondo K C. Acoustic Doppler current observations of ocean current velocities from a seaexplorer glider[D]. Texas, USA: The University of Texas at San Antonio, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article Views(832) PDF Downloads(41) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return