• 中国科技核心期刊
  • JST收录期刊
Turn off MathJax
Article Contents
XU Wenfeng, LIU Jiapeng, YU Jinpeng, HAN Yaning. Adaptive Neural Network-Based Prescribed Performance Control of AUVs with Input Saturation[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0041
Citation: XU Wenfeng, LIU Jiapeng, YU Jinpeng, HAN Yaning. Adaptive Neural Network-Based Prescribed Performance Control of AUVs with Input Saturation[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0041

Adaptive Neural Network-Based Prescribed Performance Control of AUVs with Input Saturation

doi: 10.11993/j.issn.2096-3920.2023-0041
  • Received Date: 2023-04-18
  • Accepted Date: 2023-07-12
  • Rev Recd Date: 2023-05-21
  • Available Online: 2023-12-13
  • Aiming at the problems of system uncertainty and input saturation of autonomous underwater vehicle(AUV), an improved adaptive neural network-based prescribed performance control strategy is proposed to track the desired trajectory. Firstly, nonlinear transformation is introduced to ensure that the position error remains within the preset time-varying range, improving control accuracy. Based on backstepping and Lyapunov functions, a virtual control law for the system is designed. Then, the neural network technology is used to process the unknown parameters of the system model, and the real control law of the system is reconstructed, which simplifies the traditional backstepping control strategy and effectively reduces the computational complexity. Then, based on the Lyapunov stability theory, the error signals of AUV system are all bounded. Finally, compared with traditional dynamic surface control methods, simulation results show that the proposed control strategy has better control performance and can effectively overcome the impact of uncertainty on system performance when considering input saturation, achieving effective tracking of target trajectories.

     

  • loading
  • [1]
    Wu Z, Wang Q, Huang H. Adaptive neural networks trajectory tracking control for autonomous underwater helicopters with prescribed performance[J]. Ocean Engineering, 2022, 264: 112519. doi: 10.1016/j.oceaneng.2022.112519
    [2]
    Cui J, Zhao L, Yu J, et al. Neural network-based adaptive finite-time consensus tracking control for multiple autonomous underwater vehicles[J]. IEEE Access, 2019, 7: 33064-33074. doi: 10.1109/ACCESS.2019.2903833
    [3]
    Shojaei K. Neural network feedback linearization target tracking control of underactuated autonomous underwater vehicles with a guaranteed performance[J]. Ocean Engineering, 2022, 258: 111827. doi: 10.1016/j.oceaneng.2022.111827
    [4]
    Yang C, Yao F, Zhang M J. Adaptive backstepping terminal sliding mode control method based on recurrent neural networks for autonomous underwater vehicle[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-16. doi: 10.1186/s10033-018-0219-4
    [5]
    Gong P, Yan Z, Zhang W, et al. Trajectory tracking control for autonomous underwater vehicles based on dual closed-loop of MPC with uncertain dynamics[J]. Ocean Engineering, 2022, 265: 112697. doi: 10.1016/j.oceaneng.2022.112697
    [6]
    Cao J, Sun Y, Zhang G, Ma Y. Target tracking control of underactuated autonomous underwater vehicle based on adaptive nonsingular terminal sliding mode control[J]. International Journal of Advanced Robotic Systems, 2020, 17(2): 451-468.
    [7]
    Guo L, Liu W, Li L, et al. Neural network non-singular terminal sliding mode control for target tracking of underactuated underwater robots with prescribed performance[J]. Journal of Marine Science and Engineering, 2022, 10(2): 252. doi: 10.3390/jmse10020252
    [8]
    Xia Y, Xu K, Huang Z, et al. Adaptive energy-efficient tracking control of a X rudder AUV with actuator dynamics and rolling restriction[J]. Applied Ocean Research, 2022, 118: 102994. doi: 10.1016/j.apor.2021.102994
    [9]
    Fang Y, Huang Z, Pu J, et al. AUV position tracking and trajectory control based on fast-deployed deep reinforcement learning method[J]. Ocean Engineering, 2022, 245: 110452. doi: 10.1016/j.oceaneng.2021.110452
    [10]
    赵杰梅, 胡忠辉. 基于动态反馈的AUV水平面路径跟踪控制[J]. 浙江大学学报: 工学版, 2018, 52(8): 1467-1473, 1481.

    Zhao Jiemei, Hu Zhonghui. Path following control of AUV in horizontal plane based on dynamic feedback control[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(8): 1467-1473, 1481.
    [11]
    杨超, 郭佳, 张铭钧. 基于RBF神经网络的作业型 AUV 自适应终端滑模控制方法及实验研究[J]. 机器人, 2018, 40(3): 336-345.

    Yang Chao, Guo Jia, Zhang Mingjun. Adaptive terminal sliding mode control method based on RBF neural network for operational AUV and its experimental research[J]. Robot, 2018, 40(3): 336-345.
    [12]
    王金强, 王聪, 魏英杰, 等. 欠驱动 AUV 自适应神经网络反步滑模跟踪控制[J]. 华中科技大学学报: 自然科学版, 2019, 47(12): 12-17.

    Wang Jinqiang, Wang Chong, Wei Yingjie, et al. Path following of an underactuated AUV based on adaptive neural network backstepping sliding mode control[J]. Journal of Huazhong University of Science and Technology, 2019, 47(12): 12-17.
    [13]
    王香, 张永林. 基于 RBF 神经网络的 AUV 路径跟踪分数阶滑模控制[J]. 水下无人系统学报, 2020, 28(3): 284-290.

    Wang Xiang, Zhang Yonglin. Fractional-Order Sliding Mode Control Based on RBF Neural Network for AUV Path Tracking[J]. Journal of unmanned undersea systems, 2020, 28(3): 284-290.
    [14]
    霍宇彤, 郭晨, 于浩淼. 欠驱动 AUV 三维路径跟踪 RBF 神经网络积分滑模控制[J]. 水下无人系统学报, 2020, 28(2): 131-138.

    Huo Yutong, Guo Chen, Yu Haomiao. RBF neural network integral sliding mode control for three-dimensional path following of underactuated AUV[J]. Journal of unmanned undersea systems, 2020, 28(2): 131-138.
    [15]
    胡汇源, 毛骏. 具有未建模动态和输入饱和约束的纯反馈非线性系统自适应神经网络控制[J]. 中国计量大学学报, 2021, 32(4): 539-548. doi: 10.3969/j.issn.2096-2835.2021.04.015

    Hu Huiyuan, Mao Jun. Adaptive neural control of pure-feedback nonlinear systems with unmodeled dynamics and input saturation[J]. Journal of China University of Metrology, 2021, 32(4): 539-548. doi: 10.3969/j.issn.2096-2835.2021.04.015
    [16]
    Von Ellenrieder K D. Dynamic surface control of trajectory tracking marine vehicles with actuator magnitude and rate limits[J]. Automatica, 2019, 105: 433-442. doi: 10.1016/j.automatica.2019.04.018
    [17]
    Wang H, Chen B, Liu X, et al. Adaptive neural tracking control for stochastic nonlinear strict-feedback systems with unknown input saturation[J]. Information Sciences, 2014, 269: 300-315. doi: 10.1016/j.ins.2013.09.043
    [18]
    Sun G, Wang D, Li T, et al. Single neural network approximation based adaptive control for a class of uncertain strict-feedback nonlinear systems[J]. Nonlinear dynamics, 2013, 72(1): 175-184.
    [19]
    Shen C, Shi Y, Buckham B. Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5796-5805. doi: 10.1109/TIE.2017.2779442
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article Views(43) PDF Downloads(3) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return