• 中国科技核心期刊
  • JST收录期刊
Volume 32 Issue 1
Feb  2024
Turn off MathJax
Article Contents
ZHANG Ziruo, LUO Kai, QIN Kan. Design Method for Low Specific Speed Axial Flow Pump for High-Speed Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 130-138. doi: 10.11993/j.issn.2096-3920.2023-0036
Citation: ZHANG Ziruo, LUO Kai, QIN Kan. Design Method for Low Specific Speed Axial Flow Pump for High-Speed Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 130-138. doi: 10.11993/j.issn.2096-3920.2023-0036

Design Method for Low Specific Speed Axial Flow Pump for High-Speed Undersea Vehicles

doi: 10.11993/j.issn.2096-3920.2023-0036
  • Received Date: 2023-04-11
  • Accepted Date: 2023-05-30
  • Rev Recd Date: 2023-05-22
  • Available Online: 2024-01-29
  • For the axial flow pumps water-jet propulsion system of undersea vehicles, the high specific speed axial flow pump designed by the lift method fails to work under shallow water and high-speed conditions at present. Therefore, this study put forward a method to design a low specific speed axial flow pump. By considering the blade grid characteristics of the NACA66a=0.8 airfoil, the design relationship among the angle of attack, lift coefficient, and other parameters was changed to establish an axial flow pump model suitable for high-speed conditions, and SST k-ω turbulence model and multi-reference frame model were used to simulate the flow field motion of the designed pump. The results show that under the design conditions, for the head and hydraulic efficiency of the designed pump, the error between the design value and the emulation value is controlled within 8%. At the same time, the cavitation resistance of the designed pump at different depths is tested to explore the minimum depth where the designed pump can work.

     

  • loading
  • [1]
    杨卫国, 汲国瑞, 蔡佑林. 前置导叶喷水推进轴流泵设计方法[J]. 舰船科学技术, 2020, 42(6): 44-49.

    Yang Weiguo, Ji Guorui, Cai Youlin. Research on design method of water jet propulsion axial-flow pump with front guide vane[J]. Ship Science and Technology, 2020, 42(6): 44-49.
    [2]
    苑龙飞, 罗凯, 蒋彬, 等. 喷水推进系统在浅水高速工况下适应性问题的数值分析[J]. 水动力学研究与进展A辑, 2016, 31(2): 225-231.

    Yuan Longfei, Luo Kai, Jiang Bin, et al. Numerical analysis of a waterjet propulsion systerm’s adaptability on the condition of shallow water[J]. Chinese Journal of Hydrodynamics, 2016, 31(2): 225-231.
    [3]
    Zhang R, Chen H X. Numerical analysis of cavitation within slanted axial-flow pump[J]. Journal of Hydrodynamics, 2013, 25(5): 663-672. doi: 10.1016/S1001-6058(13)60411-4
    [4]
    曹玉良, 王永生, 靳栓宝. 喷水推进轴流泵三元水力设计[J]. 交通运输工程学报, 2015, 15(2): 42-49. doi: 10.3969/j.issn.1671-1637.2015.02.007

    Cao Yuliang, Wang Yongsheng, Jin Shuanbao. Three-dimensional hydraulic design of axial waterjet pump[J]. Hournal of Traffic and Transportation Engineering, 2015, 15(2): 42-49. doi: 10.3969/j.issn.1671-1637.2015.02.007
    [5]
    Shi L, Zhu J, Tang F, et al. Multi-disciplinary optimization design of axial-flow pump impellers based on the approximation model[J]. Energies, 2020, 13(4): 779. doi: 10.3390/en13040779
    [6]
    曹卫东, 张骞, 徐玉敏. 高速潜水轴流泵大流量工况的空化特性[J]. 水利水电科技进展, 2021, 41(1): 55-61,79. doi: 10.3880/j.issn.1006-7647.2021.01.009

    Cao Weidong, Zhang Qian, Xu Yumin. Cavitation characteristics of high-speed submersible axial-flow pump in high flow condition[J]. Advances in Science and Technology of Water Resources, 2021, 41(1): 55-61,79. doi: 10.3880/j.issn.1006-7647.2021.01.009
    [7]
    彭凯. 轴流泵顶隙涡的数值模拟研究[J]. 水动力学研究与进展A辑, 2018, 33(6): 685-688.

    Peng Kai. Numerical investigation of tip leakage vortex in axial-flow pump[J]. Chinese Journal of Hydrodynamics, 2018, 33(6): 685-688.
    [8]
    袁建平, 范猛, Pace G, 等. 高比转速轴流泵正交优化设计研究[J]. 振动与冲击, 2018, 37(22): 115-121.

    Yuan Jianping, Fan Meng, Pace G, et al. Orthogonal optimum design method for high specific-speed axial-flow pumps[J]. Journal of Vibration and Shock, 2018, 37(22): 115-121.
    [9]
    Gerakopulos R, Boutilier M, Yarusevych S. Aerodynamic characterization of a NACA 0018 airfoil at low reynolds numbers[C]//Fluid Dynamics and Co-located Conference. Reston: American Institute of Aeronautics and Astronautics, 2010.
    [10]
    关醒凡. 现代泵理论与设计[M]. 北京: 中国宇航出版社, 2010.
    [11]
    杨从新, 王玲, 杨焘. 导叶叶片厚度对核主泵性能的影响[J]. 兰州理工大学学报, 2019, 45(2): 45-50. doi: 10.3969/j.issn.1673-5196.2019.02.008

    Yang Congxin, Wang Ling, Yang Tao. Effect of guide vane thickness on performance of nuclear mean pump[J]. Journal of Lanzhou University of Technology, 2019, 45(2): 45-50. doi: 10.3969/j.issn.1673-5196.2019.02.008
    [12]
    李忠, 杨敏官, 姬凯, 等. 轴流泵叶顶间隙空化流可视化实验研究[J]. 工程热物理学报, 2011, 32(8): 1315-1318.

    Li Zhong, Yang Minguan, Ji Kai, et al. Visualization research on cavitating flow in tip clearance of axial-flow pump[J]. Journal of Engineering Thermophysics, 2011, 32(8): 1315-1318.
    [13]
    吴子娟, 侯聪, 梁武科, 等. 叶片安装角对轴流泵空化性能的影响[J]. 水动力学研究与进展A辑, 2020, 35(3): 277-284.

    Wu Zijuan, Hou Cong, Liang Wuke, et al. Effect of blade installation angle on cavitation performance of axial flow pump[J]. Chinese Journal of Hydrodynamics, 2020, 35(3): 277-284.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article Views(42) PDF Downloads(14) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return