• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 31 Issue 3
Jun  2023
Turn off MathJax
Article Contents
LIU Qiang, BIAN Gang, ZHANG Shengjun, DAI Renwei. Path Optimization of Underwater Glider Based on Depth-averaged Current Prediction Model[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 398-404. doi: 10.11993/j.issn.2096-3920.202204016
Citation: LIU Qiang, BIAN Gang, ZHANG Shengjun, DAI Renwei. Path Optimization of Underwater Glider Based on Depth-averaged Current Prediction Model[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 398-404. doi: 10.11993/j.issn.2096-3920.202204016

Path Optimization of Underwater Glider Based on Depth-averaged Current Prediction Model

doi: 10.11993/j.issn.2096-3920.202204016
  • Received Date: 2022-04-25
  • Accepted Date: 2022-06-27
  • Rev Recd Date: 2022-05-16
  • Available Online: 2023-05-26
  • With the wide application of underwater gliders in the field of ocean surveying and underwater acoustic detection, accurate and efficient control of their path is important for refined ocean observation. In view of the problem that the underwater glider has a large path deviation due to the influence of current, the least-squares support vector machine (LSSVM) method is used to predict the depth-averaged current. The minimum path deviation of a single profile is taken as the objective function, with the constraint condition that the difference between the actual and planned heading does not exceed a certain value. A nonlinear constraint extremum model is constructed, and the optimal target heading and outlet point coordinate are calculated, to realize the goal of path optimization. The historical data of the Petrel-II glider are used for verification, and the following results are obtained. 1) The LSSVM method has high accuracy in predicting the depth-averaged current, however, its prediction accuracy is poor when the local current direction changes significantly. The prediction accuracy is higher when the first three historical profile data are used as training samples. 2) Following path optimization with the proposed method, the path of the glider is more stable, and the average path deviation is 281.1 m.

     

  • loading
  • [1]
    陈质二, 俞建成, 张艾群. 面向海洋观测的长续航力移动自主观测平台发展现状与展望[J]. 海洋技术学报, 2016, 35(1): 122-130.

    Chen Zhier, Yu Jiancheng, Zhang Aiqun. Overview on observation-oriented unmanned marine vehicles with high cruising ability: Development status and prospect[J]. Journal of Ocean Technology, 2016, 35(1): 122-130.
    [2]
    杨绍琼, 成丹, 陈光耀. 面向典型海洋现象观测的水下滑翔机应用综述[J]. 热带海洋学报, 2022, 41(3): 54-74.

    Yang Shaoqiong, Cheng Dan, Chen Guangyao. Review on the application of underwater gliders for observing typical ocean phenomena[J]. Journal of Tropical Oceanography, 2022, 41(3): 54-74.
    [3]
    沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xinrui, Wang Yanhui, Yang Shaoqiong, et al. Development of underwater gliders: An overview and prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [4]
    顾建农, 张志宏, 王冲, 等. 海流对水下滑翔机运动参数的影响[J]. 海军工程大学学报, 2018, 30(4): 1-7.

    Gu Jiannong, Zhang Zhihong, Wang Chong, et al. Influence of ocean current on motion parameter of underwater glider[J]. Journal of Naval University of Engineering, 2018, 30(4): 1-7.
    [5]
    Ramos A G, Garcia-Garrido V J, Mancho A M, et al. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions[J]. Scientific Reports, 2018, 8(1): 4575. doi: 10.1038/s41598-018-23028-8
    [6]
    Shih C C, Hong M F, Chen C Y. A parallel genetic approach to path-planning with upstream current avoidance for multi-AUG deployment[J]. Soft Computing, 2020, 24(11): 8427-8441. doi: 10.1007/s00500-019-04409-1
    [7]
    Nicolai V O B, Zhou M X, Taimaz B, et al. Overview of a new ocean glider navigation system: OceanGNS[J]. Frontiers in Marine Science, 2021, 12(8): 296-308.
    [8]
    桑宏强, 于佩元, 孙秀军. 基于航向补偿的水下滑翔机路径跟踪控制方法[J]. 水下无人系统学报, 2019, 27(5): 541-547.

    Sang Hongqiang, Yu Peiyuan, Sun Xiujun. Path tracking control method of underwater glider based on heading compensation[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 541-547.
    [9]
    宋大雷, 臧文川, 郭婷婷, 等. 水下滑翔机长航程全局路径规划[J]. 控制工程, 2020, 27(10): 1680-1685.

    Song Dalei, Zang Wenchuan, Guo Tingting, et al. Global path planning for long range voyage of underwater gliders[J]. Control Engineering of China, 2020, 27(10): 1680-1685.
    [10]
    朱心科, 侯斐, 孟肯, 等. 较强海流中的低速水下机器人路径优化[J]. 海洋技术学报, 2021, 40(6): 54-60.

    Zhu Xinke, Hou Fei, Meng Ken, et al. The path plan for the low speed autonomous underwater vehicle in stronger ocean current[J]. Journal of Ocean Technology, 2021, 40(6): 54-60.
    [11]
    Merckelbach L M, Briggs R D, Smeed D A, et al. Current measurements from autonomous underwater gliders[C]//9th IEEE/OES Working Conference on Current Measurement Technology. Piscataway, NJ, USA: IEEE, 2008: 61-67.
    [12]
    Smith R N, Kelly J, Chao Y, et al. Towards the improvement of autonomous glider navigational accuracy through the use of regional ocean models[C]//ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. New York, NY, USA: ASME, 2010: 597-606.
    [13]
    Chang D, Zhang F, Edwards C R. Real-time guidance of underwater gliders assisted by predictive ocean models[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(3): 562-578. doi: 10.1175/JTECH-D-14-00098.1
    [14]
    周耀鉴, 刘世杰, 俞建成, 等. 基于局部流场构建的水下滑翔机路径规划[J]. 机器人, 2018, 40(1): 1-7.

    Zhou Yaojian, Liu Shijie, Yu Jiancheng, et al. Underwater glider path planning based on local flow field construction[J]. Robot, 2018, 40(1): 1-7.
    [15]
    何柏岩, 杜金辉, 杨绍琼, 等. 基于VMD-LSSVM的水下滑翔机深平均流预测[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(4): 388-396.

    He Baiyan, Du Jinhui, Yang Shaoqiong, et al. Prediction of underwater glider depth-averaged current velocity based on VMD-LSSVM[J]. Journal of Tianjin University (Science and Technology), 2021, 54(4): 388-396.
    [16]
    Zhou Y, Liu S, Zhang Y, et al. Method for predicting depth-averaged current velocities of underwater gliders based on data feature analysis[J]. AIP Advances, 2021, 11(7): 075203. doi: 10.1063/5.0058318
    [17]
    刘凡俊, 李登有. 球面的距离公式及其应用[J]. 数学教学研究, 2013, 32(3): 39-40. doi: 10.3969/j.issn.1671-0452.2013.03.012

    Liu Fanjun, Li Dengyou. Distance formula of sphere and application[J]. Research of Mathematic Teaching-Learning, 2013, 32(3): 39-40. doi: 10.3969/j.issn.1671-0452.2013.03.012
    [18]
    Vincenty T. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations[J]. Survey Review, 1975, 23(176): 88-93.
    [19]
    Suykens J A K, Vandewalle J. Least squares support vectors machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. doi: 10.1023/A:1018628609742
    [20]
    谢政, 李建平. 非线性最优化理论与方法[M]. 北京: 高等教育出版社, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article Views(201) PDF Downloads(34) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return