• 中国科技核心期刊
  • JST收录期刊
Volume 30 Issue 3
Jul  2022
Turn off MathJax
Article Contents
YANG Gui-tao, YU Yang-hui, ZHANG Hong, GUO Rui. Simulations and Experiments on the Damage of Tantalum Alloy EFP to Water-Partitioned Armor[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 332-337. doi: 10.11993/j.issn.2096-3920.2022.03.008
Citation: YANG Gui-tao, YU Yang-hui, ZHANG Hong, GUO Rui. Simulations and Experiments on the Damage of Tantalum Alloy EFP to Water-Partitioned Armor[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 332-337. doi: 10.11993/j.issn.2096-3920.2022.03.008

Simulations and Experiments on the Damage of Tantalum Alloy EFP to Water-Partitioned Armor

doi: 10.11993/j.issn.2096-3920.2022.03.008
  • Received Date: 2021-09-13
    Available Online: 2022-07-18
  • To study the damage effects of tantalum alloy explosively formed projectiles(EFPs) on the water-partitioned armor of submarines with double-layer armor(composed of a non-pressure-resistant hull, pressure-resistant hull, and water interlayer), numerical simulations and experiments were conducted, and the results were compared to numerical damage results for copper EFPs formed using the same charge structure. The results demonstrate that after penetrating a 3 mm non-pressure-resistant hull made of #45 steel and a 680 mm water layer, the tantalum alloy EFP still had residual kinetic energy acting on a 12 mm pressure-resistant shell made of #45 steel, which caused uplift deformation, but failed to penetrate. The copper EFP failed to penetrate the water layer after penetrating the non-pressure-resistant hull. The numerical simulation results are in good agreement with the experimental results, which proves that tantalum alloy is more suitable than copper as a liner material for underwater EFP warheads.

     

  • loading
  • [1]
    Janzon S G, Chick M, Bussel T. Penetration and Failure of Explosive Formed Penetrators in Water[C]//14th International Symposium on Ballistics. Quebec, Canada:Canadian Defence Preparedness Association, 1993:611-617.
    [2]
    Hussain G, Hameed A, Hetherington J G, et al. The Explosively Formed Projectile (EFP) as a Standoff Sea Mine Neutralization Device[J]. Journal of Energetic Materials, 2013, 31:100-114.
    [3]
    曹兵. EFP战斗部水下作用特性研究[J].火工品, 2007(3):2-5.

    Cao Bing. Research on Underwater Action Characteristics of EFP Warhead[J]. Initiators&Pyrotechnics, 2007(3):2-5.
    [4]
    步相东,王团盟.鱼雷聚能战斗部自锻弹丸水中运动特性仿真研究[J].鱼雷技术, 2006, 14(3):44-47.

    Bu Xiang-dong, Wang Tuan-meng. Simulation Study on Kinematic Characteristic of Explosively Formed Projectile (EFP) in the Water for Torpedo Shaped Charge Warhead[J]. Torpedo Technology, 2006, 14(3):44-47.
    [5]
    潘建.带隔板聚能装药爆轰波传播与应用研究[D].南京:南京理工大学, 2018.
    [6]
    Gao F, Zhang X F, Serjouei A, et al. Dynamic Behavior and Constitutive Mode for Two Tantalum-Tungsten Alloys Under Elevated Strain Rates[J]. Rare Metal Materials and Engineering, 2017, 46(10):2758-2760.
    [7]
    陈刚,陈忠富,徐伟芳,等. 45钢的J-C损伤失效参量研究[J].爆炸与冲击, 2007, 27(2):131-135.

    Chen Gang, Chen Zhong-fu, Xu Wei-fang, et al. Investigation on the J-C Ductile Fracture Parameters of 45 Steel[J]. Explosive and Shock Waves, 2007, 27(2):131-135.
    [8]
    沈俊昶,杨才福,张永权,等.船体结构用高强韧特厚钢板的研究[J].材料开发与应用, 2004, 19(5):1-5.

    Shen Jun-chang, Yang Cai-fu, Zhang Yong-quan, et al. Research on High Strength and Toughness Thick Plate for Ship Hull Structures[J]. Development and Application of Materials, 2004, 19(5):1-5.
    [9]
    吴始栋.舰船先进结构材料的发展[J].材料开发与应用, 1992, 14(2):36-41.

    Wu Shi-dong. Development of Advanced Ship Structural Materials[J]. Development and Application of Materials, 1992, 14(2):36-41.
    [10]
    王长利,周刚,马坤,等.典型含水复合结构在聚能装药水下爆炸作用下的毁伤[J].船舶力学, 2018, 22(8):1002-1009.

    Wang Chang-li, Zhou Gang, Ma Kun, et al. Damage Anlysis of Typical Water Partitioned Structure Under Shaped Charge Underwater Explosion[J]. Journal of Ship Mechanics, 2018, 22(8):1002-1009.
    [11]
    纪杨子燚,李向东,周兰伟,等.高速侵彻体撞击冲液容器形成的液压水锤效应研究进展[J].振动与冲击, 2019, 38(19):242-251.

    Ji Yang Zi-yi, Li Xiang-dong, Zhou Lan-wei, et al. Review of Study on Hydrodynamic Ram Effect Generated Due to High-velocity Penetrator Impacting Fluid-filled Container[J]. Journal of Vibration and Shock, 2019, 38(19):242-251.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(80) PDF Downloads(16) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return