• 中国科技核心期刊
  • JST收录期刊
Volume 30 Issue 3
Jul  2022
Turn off MathJax
Article Contents
YU Yang-hui, GUO Rui, SONG Pu, GU Xiao-hui, HU Hong-wei. Overpressure Characteristics of Shock Waves Generated by Underwater Two-point Explosion from Aluminized Explosives[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 300-307. doi: 10.11993/j.issn.2096-3920.2022.03.004
Citation: YU Yang-hui, GUO Rui, SONG Pu, GU Xiao-hui, HU Hong-wei. Overpressure Characteristics of Shock Waves Generated by Underwater Two-point Explosion from Aluminized Explosives[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 300-307. doi: 10.11993/j.issn.2096-3920.2022.03.004

Overpressure Characteristics of Shock Waves Generated by Underwater Two-point Explosion from Aluminized Explosives

doi: 10.11993/j.issn.2096-3920.2022.03.004
  • Received Date: 2022-03-14
    Available Online: 2022-07-18
  • Multiple-explosion-source shock waves are one of the typical load types in underwater multipoint explosions. However, the associated working conditions often require the use of a large-scale three-dimensional computing domain for simulation, resulting in a significant calculation workload. Based on the existence of bubbles in the explosion products and the secondary energy release process of aluminized explosives, the linear superposition principle cannot accurately describe the laws of multi-point explosion loads. This research focused on the overpressure characteristics of the shock waves generated by the underwater two-point explosions of a typical polymer-bonded aluminized explosive using testing and simulation methods. The results indicate that the time history curves of overpressure obtained using different artificial viscosity values in different time periods are in good agreement with test curves. The error of multi-peak overpressure is typically below 15%. However, the time history curves of overpressure do not exhibit a low-amplitude discontinuous peak after the main shock wave peak. The reasons for this phenomenon are discussed in this paper. Such peaks are thought to be formed by aluminum particles reacting with surrounding material inside a shock wave. Additionally, the time history curves of the shock waves generated by the explosion of a single charge and two charges of the same mass are compared. Finally, the characteristics and differences of the time history curves of overpressure at 0°, 45°,and 90° are analyzed in detail. The research presented in this paper can provide a basis for the subsequent establishment of an underwater multipoint explosion load prediction model.

     

  • loading
  • [1]
    Cole P.水下爆炸[M].罗耀杰,译.北京:国防工业出版社, 1960.
    [2]
    ОРЛЕНКО Л П.爆炸物理学[M].孙承纬,译.北京:科学出版社, 2011.
    [3]
    Zamyshlyaev B V, Yakovlev Y S. Dynamic Loads in Underwater Explosion:AD 757183[R]. Washington D C:Naval Intelligence Support Center, 1973.
    [4]
    吴国群,张明晓,弓启祥,等.水下爆炸冲击波相互作用的研究[J].煤矿爆破, 2011, 93(2):12-15.

    Wu Guo-qun, Zhang Ming-xiao, Gong Qi-xiang, et al. Study on the Interaction of the Shock Waves in Underwater Explosions[J]. Coal Mine Blasting, 2011, 93(2):12-15.
    [5]
    盛振新,刘荣忠,郭锐.水下爆炸冲击波相互作用的仿真分析[J].火工品, 2012(3):25-29.

    Sheng Zhen-xin, Liu Rong-zhong, Guo Rui. Study on the Shock Waves Interaction of Underwater Explosions[J]. Initiators&Pyrotechnics, 2012(3):25-29.
    [6]
    Cui P, Wang Q X, Wang S P, et al. Experimental Study on Interaction and Coalescence of Synchronized Multiple Bubbles[J]. Physics of Fluids, 2016, 28(1):012103.
    [7]
    Han R, Li S, Zhang A M, et al. Modelling for Three Dimensional Coalescence of Two Bubbles[J]. Physics of Fluids, 2016, 28(6):062104.
    [8]
    余俊,盛振新,毛海斌,等.水下多点爆炸条件下的冲击波载荷特性[J].高压物理学报, 2021, 35(2):120-127.

    Yu Jun, Sheng Zhen-xin, Mao Hai-bin, et al. Load Characteristics of Shock Wave under Condition of Multiple Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2021, 35(2):120-127.
    [9]
    胡宏伟,王健,冯海云,等.多点水中阵列爆炸冲击波的传播特性[J].含能材料, 2021, 29(5):370-380.

    Hu Hong-wei, Wang Jian, Feng Hai-yun, et al. The Propagation Characteristics of Shock Wave for Muti-charge Underwater Array Explosion[J]. Chinese Journal of Energetic Materials, 2021, 29(5):370-380.
    [10]
    朱凌,田岚仁,李德聪,等.饱和冲量及其等效方法在舱室内爆炸中的应用[J].中国舰船研究, 2021, 16(2):99-107.

    Zhu Ling, Tian Lan-ren, Li De-cong, et al. Saturated Impulse and Application of Saturation Equivalent Method in Cabin Explosion[J]. Chinese Journal of Ship Research, 2021, 16(2):99-107.
    [11]
    Huang H, Jiao Q J, Nie J X, et al. Numerical Modeling of Underwater Explosion by One-dimensional ANSYS-AUTODYN[J]. Journal of Energetic Materials, 2011, 29(4):292-325. Shin Y S, Lee M, Lam K Y, et al. Modeling Mitigation Effects of Watershield on Shock Waves[J]. Shock&Vibration, 1998, 5(4):225-234.
    [12]
    Miller P J, Guirguis R H. Experimental Study and Model Calculations of Metal Combustion in Al/AP Underwater Explosives[J]. Mat. Res. Soc. Symp. Proc., 1992, 296:299-304.
    [13]
    赵继波,谭多望,李金河,等.含铝炸药水中爆炸冲击波相似律适应性探索[J].高压物理学报, 2010, 24(5):388-394.

    Zhao Ji-bo, Tan Duo-wang, Li Jin-he, et al. Investigation on Applicability of Shock Similar Law for Underwater Explosion of Aluminiferous Explosive[J]. Chinese Journal of High Pressure Physics, 2010, 24(5):388-394.
    [14]
    陈玲.铝粉爆炸特性的实验研究和数值模拟[D].大连:大连理工大学, 2011.
    [15]
    赵倩.黑索金含铝炸药水中爆炸能量输出与效应研究[D].北京:北京理工大学, 2017.
    [16]
    陈朗.含铝炸药爆轰[M].北京:国防工业出版社, 2004.
    [17]
    Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Berlin:Springer Berlin Heidelberg, 2013.
    [18]
    Xie W F, Liu T G, Khoo B C. Application of a One-fluid Model for Large Scale Homogeneous Unsteady Cavitation:The Modified Schmidt Model[J]. Computers&Fluids, 2006, 35(10):1177-1192.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(117) PDF Downloads(29) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return