• 中国科技核心期刊
  • JST收录期刊
Volume 30 Issue 3
Jul  2022
Turn off MathJax
Article Contents
GAO Wen-bo, ZHAO Zhen-yu, REN Jian-wei, LU Tian-jian. Effects of Water Covering on Impulse Transfer in Shallow Buried Explosions[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 292-299. doi: 10.11993/j.issn.2096-3920.2022.03.003
Citation: GAO Wen-bo, ZHAO Zhen-yu, REN Jian-wei, LU Tian-jian. Effects of Water Covering on Impulse Transfer in Shallow Buried Explosions[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 292-299. doi: 10.11993/j.issn.2096-3920.2022.03.003

Effects of Water Covering on Impulse Transfer in Shallow Buried Explosions

doi: 10.11993/j.issn.2096-3920.2022.03.003
  • Received Date: 2022-02-18
    Available Online: 2022-07-18
  • Shallow buried explosions covered by water are one of the major threats to armored vehicles fighting in tidal flat areas. Based on the influence of both the water layer and sand layer, the impulse transfer characteristics of shallow buried explosions covered by water are significantly different from those of traditional shallow buried explosions. To characterize the influence of water covering on impulse transfer, this study employed a fluid-structure coupling algorithm to simulate shallow buried explosions covered by water using the finite element software AUTODYN. The results demonstrate that the fluid-structure coupling method can effectively simulate shallow buried explosions covered by water. Water covering enhances the impulse transmitted to the target in shallow buried explosions and the impulse increases with an increasing depth of the water layer. The thickness of the cushion layer placed at the bottom of the explosive also affects impulse transfer. The results of this study can provide useful guide-lines for designing high-performance protection structures for armored vehicles used in tidal flat areas.

     

  • loading
  • [1]
    赵振宇,任健伟,金峰,等.浅埋炸药爆炸动力学研究进展[J].应用力学学报, 2022, 39(1):1-11.

    Zhao Zhen-yu, Ren Jian-wei, Jin Feng, et al. Process of Explosion Dynamics of Shallow-buried Explosive[J]. Chinese Journal of Applied Mechanics, 2022, 39(1):1-11.
    [2]
    钱七虎.岩石爆炸动力学的若干进展[J].岩石力学与工程学报, 2009, 28(10):1945-1968.

    Qian Qi-hu. Some Advances in Rock Blasting Dynamics[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10):1945-1968.
    [3]
    Bangash M. Shock, Impact and Explosion:Structural Analysis and Design[M]. Berlin:Springer, 2009.
    [4]
    Ramasamy A, Hill A M, Masouros S D, et al. Evaluating the Effect of Vehicle Modification in Reducing Injuries from Landmine Blasts. An Analysis of 2212 Incidents and Its Application for Humanitarian Purposes[J]. Accident Analysis and Prevention, 2011, 43(5):1878-1886.
    [5]
    Callaway D W, Burstein J L. Operational and Medical Management of Explosive and Blast Incidents[M]. Berlin:Springer, 2020.
    [6]
    Genson K W. Vehicle Shaping for Mine Blast Damage Reduction[D]. College Park:University of Maryland, 2006.
    [7]
    Clake S D, Fay S D, Warren J A, et al. Predicting the Role of Geotechnical Parameters on the Output from Shallow Buried Explosives[J]. International Journal of Impact Engineering, 2017, 102:117-128.
    [8]
    Rigby S E, Fay S D, Clarke S D, et al. Measuring Spatial Pressure Distribution from Explosives Buried in Dry Leighton Buzzard Sand[J]. International Journal of Impact Engineering, 2016, 96:89-104.
    [9]
    Denefeld V, Heider N, Holzwarth A. Measurement of the Spatial Specific Impulse Distribution Due to Buried High Explosive Charge Detonation[J]. Defence Technology, 2017, 13(3):219-227.
    [10]
    李晓坤,郭香华,张庆明.浅埋地雷爆炸载荷分布的数值仿真分析[J].兵器装备工程学报, 2020, 41(1):188-192.

    Li Xiao-kun, Guo Xiang-hua, Zhang Qing-ming. Numerical Simulation Analysis on the Distribution of Explosive Loads in Shallow Buried Mines[J]. Journal of Ordnance Equipment Engineering, 2020, 41(1):188-192.
    [11]
    Fox D M, Lee J S. The Influence of Water, Dry Sand, and Unsaturated Sand Constitutive Behavior on the Blast Response of a Rigid Target[J]. International Journal of Impact Engineering, 2014, 65:163-173.
    [12]
    Goel A, Uth T, Liu T, et al. Coupled Discrete/continuum Simulations of the Impact of Granular Slugs with Clamped Beams:Stand-off Effects[J]. Mechanics of Materials, 2018, 116:90-103.
    [13]
    Deshpande V S, Mcmeeking R M, Wadley H, et al. Constitutive Model for Predicting Dynamic Interactions between Soil Ejecta and Structural Panels[J]. Journal of the Mechanics&Physics of Solids, 2009, 57(8):1139-1164.
    [14]
    Mcshane G J, Deshpande V S, Fleck N A. A Laboratory-scale Buried Charge Simulator[J]. International Journal of Impact Engineering, 2013, 62:210-218.
    [15]
    Hlady S L. Effect of Soil Parameters on Landmine Blast[C]//18th Military Aspects of Blast and Shock Conference. Bad Reichenhall:Wehrtechnische Dienststelle für Schutzund Sondertechnik, 2004.
    [16]
    Grujicic M, Pandurangan B, Hariharan A. Comparative Discrete-particle versus Continuum-based Computational Investigation of Soil Response to Impulse Loading[J]. Journal of Materials Engineering and Performance, 2011, 20(9):1520-1535.
    [17]
    Rajasekar J, Kim T H, Kim H D. Visualization of Shock Wave Propagation due to Underwater Explosion[J]. Journal of Visualization, 2020, 23(5):1-13.
    [18]
    Jin Z Y, Yin C Y, Chen Y, et al. Dynamics of an Underwater Explosion Bubble Near a Sandwich Structure[J]. Journal of Fluids and Structures, 2019, 86, 247-265.
    [19]
    文彦博,胡亮亮,秦健,等.近场水下爆炸气泡脉动及水射流的实验与数值模拟研究[J/OL].爆炸与冲击.[2022-05-06]. http://www.bzycj.cn/article/doi/10.11883/bzycj-2021-0206.
    [20]
    Feng L J, Wei G T, Yu G C, et al. Underwater Blast Behaviors of Enhanced Lattice Truss Sandwich Panels[J]. International Journal of Mechanical Sciences, 2019, 150, 238-246.
    [21]
    张森,韩庚奋,赖西南,等.涉水触雷爆炸伤的特点及机制[J].解放军医学杂志, 2017, 42(10):914-919.

    Zhang Sen, Han Geng-fen, Lai Xi-nan, et al. The Characteristics of Mine Explosion Injury of Wading in Shoal:A Study on an Animal Model[J]. Medical Journal of Chinese People's Liberation Army, 2017, 42(10):914-919.
    [22]
    韩庚奋.浅滩地雷爆炸的损伤特点及力学机制研究[D].重庆:第三军医大学, 2014.
    [23]
    Pickering E G, Yuen S, Nurick G N, et al. The Response of Quadrangular Plates to Buried Charges[J]. International Journal of Impact Engineering, 2012, 49:103-114.
    [24]
    Bornstein H, Ryan S, Mouritz A. Physical Mechanisms for Near-field Blast Mitigation with Fluid Containers:Effect of Container Geometry[J]. International Journal of Impact Engineering, 2016, 96:61-77.
    [25]
    Laine L, Sandvik A. Derivation of Mechanical Properties for Sand[C]//4th Asian-Pacific Conference on Shock and Impact Loads on Structures. Singapore:CI-Premier, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(111) PDF Downloads(13) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return