• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 30 Issue 2
Apr  2022
Turn off MathJax
Article Contents
ZHANG Zhen, ZHANG Tao, HE Wen-sheng, ZHU Min, SHAO Yong-yong, YANG Zhuang-tao. Element Matching Analysis Method for Underwater Towed Buoy Systems[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 170-177. doi: 10.11993/j.issn.2096-3920.2022.02.005
Citation: ZHANG Zhen, ZHANG Tao, HE Wen-sheng, ZHU Min, SHAO Yong-yong, YANG Zhuang-tao. Element Matching Analysis Method for Underwater Towed Buoy Systems[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 170-177. doi: 10.11993/j.issn.2096-3920.2022.02.005

Element Matching Analysis Method for Underwater Towed Buoy Systems

doi: 10.11993/j.issn.2096-3920.2022.02.005
  • Received Date: 2022-01-01
    Available Online: 2022-07-16
  • An underwater towed buoy system is an important means of undersea vehicle concealed communication and positioning. To utilize this system, it is crucial to match the buoy, tow cable, and towed vehicle. In this study, based on the classical method proposed by Ablow and Schechter for analyzing towed cable dynamics, we investigated the influence of towing velocity, towing vehicle depth, and buoy’s pitch angle on the tow cable’s shape and tension, considering an underwater towed buoy system as the research object. To meet the requirements of towing security and minimize the towing vehicle load, we established an analysis method for matching the buoy, tow cable, and towing vehicle, obtained the optimal matching law under different working conditions, and proposed the corresponding control expectation target of the winch and buoy. The results demonstrate that the buoy optimal pitch angle, which ensures that the underwater towed system fulfils the towing safety and minimum towing load requirements, increases with decreasing towing velocity and increasing towing depth.

     

  • loading
  • [1]
    叶果洛夫.水下拖曳系统[M].北京:海洋出版社, 1989.
    [2]
    苑志江,金良安,田恒斗,等.海洋拖曳系统的水动力理论与控制技术研究综述[J].科学技术与工程, 2013, 13(2):408-415, 420.

    Yuan Zhi-jiang, Jin Liang-an, Tian Heng-dou, et al. Comments on the Research of Hydrodynamic and Control Technology of Underwater Towed System[J]. Science Technology and Engineering, 2013, 13(2):408-415, 420.
    [3]
    庞师坤,刘旌扬,王健,等.二级深拖系统的回转运动特性[J].船舶工程, 2017, 39(9):71-77.

    Pang Shi-kun, Liu Jing-yang, Wang Jian, et al. Motion Characteristics of Two-part Towed System during Towing Ship Turning Maneuvers[J]. Ship Engineering, 2017, 39(9):71-77.
    [4]
    敖雷,连琏,徐雪松,等.母船垂荡运动下拖缆响应研究[J].船舶工程, 2013, 35(z1):28-31, 51.

    Ao Lei, Lian Lian, Xu Xue-song, et al. Study of Towed Cables Response under Heave Motion of Mother Ships[J]. Ship Engineering, 2013, 35(z1):28-31, 51.
    [5]
    Walton T S, Polachek H. Calculation of Transient Motion of Submerged Cables[J]. Mathematics of Computation, 1960, 14(69):27-46.
    [6]
    Ablow C M, Schechter S. Numerical Simulation of Undersea Cable Dynamics[J]. Ocean Engineering, 1983, 10(6):443-457.
    [7]
    Leonard J W, Nath J H. Comparison of Finite Element and Lumped Parameter Methods for Oceanic Cables[J]. Engineering Structures, 1981, 3(3):153-167.
    [8]
    Sun Y, Leonard J W, Chiou R B. Simulation of Unsteady Oceanic Cable Deployment by Direct Integration with Suppression[J]. Ocean Engineering, 1994, 21(3):243-256.
    [9]
    吴家鸣,郁苗,朱琳琳.带缆遥控水下机器人水动力数学模型及其回转运动分析[J].船舶力学, 2011, 15(8):827-836.

    Wu Jia-ming, Yu Miao, Zhu Lin-lin. A Hydrodynamic Model for a Tethered Underwater Robot and Dynamic Analysis of the Robot in Turning Motion[J]. Journal of Ship Mechanics, 2011, 15(8):827-836.
    [10]
    Wu J, Chwang A T. A Hydrodynamic Model of a Two-part Underwater Towed System[J]. Ocean Engineering, 2000, 27(5):455-472.
    [11]
    马伟,师子锋.收放拖缆对拖体深度影响的仿真分析[J].水雷战与舰船防护, 2012(3):67-69.

    Ma Wei, Shi Zi-feng. Simulation Analysis on Effects of Deploying and Retracting Cable to Towed Body Depth[J]. Mine Warfare&Ship Self-Defence, 2012(3):67-69.
    [12]
    叶凡滔,陈彦勇,邵永勇,等.一种水下非均质拖曳线列阵动力学仿真方法及试验验证[J].舰船科学技术, 2017, 39(3):127-130, 134.

    Ye Fan-tao, Chen Yan-yong, Shao Yong-yong, et al. A Dynamic Simulation Method and Experimental Verification of Underwater Heterogeneous Towed Linear Array[J]. Ship Science and Technology, 2017, 39(3):127-130, 134.
    [13]
    张大朋,白勇,章浩燕,等.海洋缆索对水下航行器的动态响应[J].水道港口, 2019, 49(5):600-605.

    Zhang Da-peng, Bai Yong, Zhang Hao-yan, et al. Dynamic Response of Marine Cable for the Underwater Vehicle[J]. Journal of Waterway and Harbor, 2019, 49(5):600-605.
    [14]
    杜晓旭,宋保维,潘光.拖曳式导航浮标对回转体UUV操纵性的影响[J].兵工学报, 2010, 31(9):1164-1168.

    Du Xiao-xu, Song Bao-wei, Pan Guang. Effects of Dragging Navigation Buoyage on Maneuverability of Body-of-revolution UUV[J]. Acta Armamentarii, 2010, 31(9):1164-1168.
    [15]
    杜晓旭,宋保维,潘光.水下双拖系统动力学建模与仿真[J].西北工业大学学报, 2011, 29(1):82-86.

    Du Xiao-xu, Song Bao-wei, Pan Guang. A New Method for Calculating a Two-Part Underwater Towed System[J]. Journal of Northwestern Polytechnical University, 2011, 29(1):82-86.
    [16]
    Rispin P. Data Package No.1 for Cable and Array Maneuvering[R]. Bethesda, MD, US:Naval Ship Research and Development Center, 1980.
    [17]
    王飞,黄国樑,邓德衡.水下拖曳系统的稳态运动分析与设计[J].上海交通大学学报, 2008, 42(4):679-684.

    Wang Fei, Huang Guo-liang, Deng De-heng. The Design and Steady-State Simulation of Underwater Towed System[J]. Journal of Shanghai Jiao Tong University, 2008, 42(4):679-684.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(147) PDF Downloads(16) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return