• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 30 Issue 2
Apr  2022
Turn off MathJax
Article Contents
ZHOU Yu, SUN Ming-wei, ZHANG Jian-hong, LIU Le-hua, CHEN Zeng-qiang. Analysis and Improvement of Supercavity Vehicle Planing Force Model[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 157-164. doi: 10.11993/j.issn.2096-3920.2022.02.003
Citation: ZHOU Yu, SUN Ming-wei, ZHANG Jian-hong, LIU Le-hua, CHEN Zeng-qiang. Analysis and Improvement of Supercavity Vehicle Planing Force Model[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 157-164. doi: 10.11993/j.issn.2096-3920.2022.02.003

Analysis and Improvement of Supercavity Vehicle Planing Force Model

doi: 10.11993/j.issn.2096-3920.2022.02.003
  • Received Date: 2021-05-28
    Available Online: 2022-07-16
  • The Dzielski benchmark and extended models have been widely applied in the study of supercavity vehicle control problems. At present, there are few comprehensive analyses of the differences between and rationale behind these models. In this study, these aspects were comparatively analyzed using numerical simulations of the state response and planing force of these models. The simulation results demonstrate that the cavity memory effect can reduce the peak value of the planing force, and cavity shift can affect the collision time and peak value of the planing force. Second, the unreasonable formulation of the planing force in the Balas model was improved. Finally, a new model is proposed based on the Mao model and its effectiveness is verified using numerical simulation. The comprehensive analysis and combination of supercavity vehicle models provide a reference for the design of a supercavity vehicle control system.

     

  • loading
  • [1]
    王改娣.超空泡鱼雷技术特点分析[J].鱼雷技术, 2007, 15(5):2-4.

    Wang Gai-di. Analysis of Technical Features of Supercavitating Torpedoes[J]. Torpedo Technology, 2007, 15(5):2-4.
    [2]
    张珂,李鹏,王志,等.超空泡航行体尾部滑行力实验研究[J].船舶力学, 2020, 24(1):8-17.

    Zhang Ke, Li Peng, Wang Zhi, et al. Experimental Study of Planing Force on Supercavitating Vehicle Tail[J]. Jou-rnal of Ship Mechanics, 2020, 24(1):8-17.
    [3]
    庞爱平,何朕,钞凡,等.超空泡航行体时滞特性分析[J].控制工程, 2019, 26(12):2241-2245.

    Pang Ai-ping, He Zhen, Chao Fan, et al. Time Delay Analysis for Supercavitating Vehicles[J]. Control Engi-neering of China, 2019, 26(12):2241-2245.
    [4]
    Dzielski J, Kurdila A. A Benchmark Control Problem for Supercavitating Vehicles and an Initial Investigation of Solutions[J]. Journal of Vibration and Control, 2003, 9(7):791-804.
    [5]
    刘伟,范辉,吕建国,等.超高速水下航行器控制方法研究热点综述[J].水下无人系统学报, 2019, 27(4):369-378.

    Liu Wei, Fan Hui, Lü Jian-guo, et al. Review of Research Hotspots of Superspeed Undersea Vehicle Control Methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(4):369-378.
    [6]
    Mao X, Wang Q. Nonlinear Control Design for a Supercavitating Vehicle[J]. IEEE Transactions on Control Sys-tems Technology, 2009, 17(4):816-832.
    [7]
    Balas G J, Bokor J, Vanek B, et al. Control of High-Speed Underwater Vehicles[M]//Control of Uncertain Systems:Modelling, Approximation and Design. Berlin Heidelberg:Springer-Verlag, 2006:25-44.
    [8]
    吕瑞,魏英杰,于开平,等.超空泡航行体的增益自适应全程滑模控制器设计[J].振动与冲击, 2011, 30(3):34-37.

    Lü Rui, Wei Ying-jie, Yu Kai-ping, et al. Design of Gain Adaptive Global Sliding Mode Controller for Supercavitating Vehicle[J]. Journal of Vibration and Shock, 2011, 30(3):34-37.
    [9]
    王京华,魏英杰,于开平,等.基于空泡记忆效应的水下超空泡航行体建模与控制[J].振动与冲击, 2010, 29(8):160-163.

    Wang Jing-hua, Wei Ying-jie, Yu Kai-ping, et al. Modeling and Control of Underwater Supercavitating Vehicle Based on Memory Effect of Cavity[J]. Journal of Vibration and Shock, 2010, 29(8):160-163.
    [10]
    李阳,刘明雍,张小件.基于自适应RBF神经网络的超空泡航行体反演控制[J].自动化学报, 2020, 46(4):734-743.

    Li Yang, Liu Ming-yong, Zhang Xiao-jian. Adaptive RBF Neural Network Based Backstepping Control for Supercavitating Vehicles[J]. Acta Automatica Sinica, 2020, 46(4):734-743.
    [11]
    韩云涛,程章龙,李盼盼,等.超空泡航行体LPV鲁棒变增益控制[J].华中科技大学学报, 2017, 45(7):127-132.

    Han Yun-tao, Cheng Zhang-long, Li Pan-pan, et al. Robust Variable Gain Control for Supercavitating Vehicles Base on LPV[J]. Journal Huazhong University of Science&Technology, 2017, 45(7):127-132.
    [12]
    Zhao X, Ye X, Liu Y, et al. Boundary Sliding Mode Controller Design for Supercavitating Vehicles[C]//Procee-dings of 2017 IEEE International Conference on Mechatronics and Automation. Takamatsu, Japan:IEEE, 2017, 1245-1249.
    [13]
    Wang J, Liu Y, Cao G, et al. Design of RBF Adaptive Sliding Mode Controller for Supercavitating Vehicle[J]. IEEE Access (2169-3536), 2021, 9:1-11.
    [14]
    韩云涛,许振,白涛,等.基于时滞特性的超空泡航行体预测控制[J].华中科技大学学报, 2020, 48(7):52-57.

    Han Yun-tao, Xu Zhen, Bai Tao, et al. Predictive Control of Supercavitating Vehicle Based on Time Delay Characteristics[J]. Journal Huazhong University of Science&Technology, 2020, 48(7):52-57.
    [15]
    Guo J, Balachandran B, Abed E H. Dynamics and Control of Supercavitating Vehicles[J]. Journal of Dynamic Systems, Measurement, and Control, 2008, 130(2):1-11.
    [16]
    宋书龙,万亚民,李建辰,等.一种基于独立膨胀原理的三维超空泡形态计算方法[J].水下无人系统学报, 2019, 27(1):51-58.

    Song Shu-long, Wan Ya-min, Li Jian-chen, et al. A Calculation Method of Three-Dimensional Supercavity Shape Based on the Principle of Independent Expansion[J]. Jo-urnal of Unmanned Undersea Systems, 2019, 27(1):51-58.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(165) PDF Downloads(26) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return