• 中国科技核心期刊
  • JST收录期刊
Volume 30 Issue 1
Feb  2022
Turn off MathJax
Article Contents
YANG Zhuang-tao, ZHANG Zhen, HE Wen-sheng, SHAO Yong-yong, ZHAO Rong-hua, MA Dian-bin. Hydrodynamic Characteristics of UUV during Dynamic Deployment Process of Underwater Unmanned Platform[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 115-121. doi: 10.11993/j.issn.2096-3920.2022.01.015
Citation: YANG Zhuang-tao, ZHANG Zhen, HE Wen-sheng, SHAO Yong-yong, ZHAO Rong-hua, MA Dian-bin. Hydrodynamic Characteristics of UUV during Dynamic Deployment Process of Underwater Unmanned Platform[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 115-121. doi: 10.11993/j.issn.2096-3920.2022.01.015

Hydrodynamic Characteristics of UUV during Dynamic Deployment Process of Underwater Unmanned Platform

doi: 10.11993/j.issn.2096-3920.2022.01.015
  • Received Date: 2016-11-19
  • Rev Recd Date: 2016-12-18
  • Publish Date: 2022-02-28
  • Unmanned undersea vehicles(UUVs) can be easily interrupted by platform navigation during the dynamic deployment of unmanned platforms. Thus, it is important to study the hydrodynamic characteristics of UUVs during this process.?Based on a solution of Reynolds-averaged Navier-Stokes equations with the turbulence model, a numerical pool suitable for the study of the dynamic distribution and separation of multi-reference frame was established using overlapping grids and a multi reference frame model. A typical example study was compared with simulation results, and a model test was carried out. The results showed that the simulation error of this method was less than 8%, and the accuracy met the requirements of engineering applications. Finally, this method was used to simulate the dynamically deployed UUV from a large, unmanned platform, predict the hydrodynamic parameters of the UUV at this state, and make a comparative study with the parameters of a free navigation state. The results showed that the operability of the UUV in the deployment state was significantly less than that in the free state. The results of this study aid in the deployment process and control strategy designs.

     

  • loading
  • [1]
    陈强, 孙嵘. 潜艇布放回收UUV方式[J]. 舰船科学技术, 2011, 33(7): 145-149.

    Chen Qiang, Sun Rong. Analysis of Launch and Recovery UUV Model for Submarine[J]. Ship Science and Technology, 2011, 33(7): 145-149.
    [2]
    李经. 水下无人作战系统装备现状及发展趋势[J]. 舰船科学技术, 2017, 39(1): 1-5, 36.

    Li Jing. Existence and Development Trend of Navy Autonomous Underwater Combat System[J]. Ship Science and Technology, 2017, 39(1): 1-5, 36.
    [3]
    杨智栋, 李荣融, 蔡卫军, 等. 国外水下预置武器发展及关键技术[J]. 水下无人系统学报, 2018, 26(6): 521-526.

    Yang Zhi-dong, Li Rong-rong, Cai Wei-jun, et al. Development and Key Technologies of Preset Undersea Weapon: a Review[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 521-526.
    [4]
    杨文, 马亮. UUV自航发射方法探究[J]. 舰船科学技术, 2017, 39(12): 114-117.

    Yang Wen, Ma Liang. Research on Technology of Self-prorelled Launching UUV[J]. Ship Science and Technology, 2017, 39(12): 114-117.
    [5]
    Huang Z G, Wessam M E, Chen Z H.Numerical Investigation of the Three-dimensional Dynamic Process of Sabot Discard[J].Journal of Mechanical Science and Technology, 2014, 28(7): 2637-2649.
    [6]
    李湘平, 鲁军勇, 冯军红, 等. 采用动网格技术的弹托分离仿真模型[J]. 国防科技大学学报, 2018, 40(5): 9-13.

    Li Xiang-ping, Lu Jun-yong, Feng Jun-hong, et al. Simulation Model for Sabot Discard Using Dynamic Mesh Technique[J]. Journal of National University of Defense Technology, 2018, 40(5): 9-13.
    [7]
    杨磊. 空中发射分离过程的动力学问题研究[D]. 西安: 西北工业大学, 2018
    [8]
    马峥, 黄少锋, 朱德祥. 湍流模型在船舶计算流体力学中的适用性研究[J]. 水动力学研究与进展, 2009, 24(2): 207-216.

    Ma Zheng, Huang Shao-feng, Zhu De-xiang. Study on Applicability of Turbulence Model in Ship Computational Fluid Dynamics[J]. Chinese Journal of Hydrodynamics, 2009, 24(2): 207-216.
    [9]
    Deglon D A, Meyer C J. CFD Modeling of Stirred Tanks Numerical Considerations[J]. Minerals Engineering, 2006, 19(10): 1059-1068.
    [10]
    陈志明, 袁剑平, 严谨, 等. 基于MRF方法和滑移网格的螺旋桨水动力性能研究[J]. 船舶工程, 2020, 42(z1): 157-162, 311.

    Chen Zhi-ming, Yuan Jian-ping, Yan Jin, et al. Study on Hydrodynamic Performance of Propeller Based on MRF Model and Sliding Mesh[J]. Ship Engineering, 2020, 42(z1): 157-162, 311.
    [11]
    王艳冰, 项松, 苏亚楠, 等. 孤立两叶螺旋桨风洞试验准定常数值模拟[J]. 应用力学学报, 2020, 37(3): 1196-1201.

    Wang Yan-bing, Xiang Song, Su Ya-nan, et al. Numerical Simulation of Isolated Two-blade Propeller Wind Tunnel Test[J]. Chinese Journal of Applied Mechanics, 2020, 37(3): 1196-1201.
    [12]
    张涛, 杨晨俊, 宋保维. 基于MRF模型的对转桨敞水性能数值模拟方法探讨[J]. 船舶力学, 2010, 14(8): 847-853.

    Zhang Tao, Yang Chen-jun, Song Bao-wei. Investigations on the Numerical Simulation Method for the Open-water Performance of Contrarotating Propellers Based on the MRF Model[J]. Journal of Ship Mechnics, 2010, 14(8): 847-853.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(141) PDF Downloads(55) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return