• 中国科技核心期刊
  • JST收录期刊
Volume 30 Issue 1
Feb  2022
Turn off MathJax
Article Contents
LI Xin-bin, WANG Peng, LUO Xi, PANG Hong-tao. Underactuated AUV Trajectory Tracking Sliding Mode Control with Input Limitation[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 44-53. doi: 10.11993/j.issn.2096-3920.2022.01.006
Citation: LI Xin-bin, WANG Peng, LUO Xi, PANG Hong-tao. Underactuated AUV Trajectory Tracking Sliding Mode Control with Input Limitation[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 44-53. doi: 10.11993/j.issn.2096-3920.2022.01.006

Underactuated AUV Trajectory Tracking Sliding Mode Control with Input Limitation

doi: 10.11993/j.issn.2096-3920.2022.01.006
  • Received Date: 2021-03-29
  • Rev Recd Date: 2021-06-04
  • Publish Date: 2022-02-28
  • Aiming at the horizontal plane trajectory tracking problem of the underactuated autonomous undersea vehicle (AUV) under external interferences and limited inputs, a sliding mode controller based on a nonlinear disturbance observer and radial basis function(RBF) neural network was proposed in this study. Firstly, the underactuated AUV kinematics model was transformed into an error kinematics model to stabilize the position error through a coordinate transformation. Secondly, the backward step method was used to design the bow-rocking angle virtual velocity control law to stabilize the attitude error. Subsequently, a nonlinear disturbance observer was used to estimate the disturbance of a time-varying ocean current, and the derivative of the virtual control law was estimated through a filter to avoid the “differential explosion” caused by the derivative of the virtual control law. Finally, an adaptive RBF neural network was designed to compensate the actual input of the underactuated AUV, and the Lyapunov stability proved that the signal used for the closed-loop tracking error was uniformly bounded. The simulation verified the effectiveness of the designed controller

     

  • loading
  • [1]
    Johnsen G, Ludvigsen M, Sørensen A, et al. The Use of Underwater Hyperspectral Imaging Deployed on Re-motely Operated Vehicles-methods and Applications[J]. IFAC Papers Online, 2016, 49(23): 476-481.
    [2]
    Li Z, Yang C, Ding N, et al. Robust Adaptive Motion Control for Underwater Remotely Operated Vehicles with Velocity Constraints[J]. International Journal of Control Automation & Systems, 2012, 10(2): 421-429.
    [3]
    Zhang G C, Huang H, Qing H D, et al. A Novel Adaptive Second Order Sliding Mode Path Following Control for a Portable AUV[J]. Ocean Engineering, 2018, 151: 82-92.
    [4]
    熊华胜, 边信黔, 施小成. 积分变结构控制原理在AUV航向控制中的应用仿真[J]. 船舶工程, 2005(5): 30-33.
    [5]
    Liang X, Qu X, Wang N, et al. Three-Dimensional Tra-jectory Tracking of an Underactuated AUV Based on Fuzzy Dynamic Surface Control[J]. IET Intelligent Transport Systems, 2019, 14(5): 364-370.
    [6]
    邓非, 尹洪东, 段梦兰. 基于AUV轨迹追踪的优化UKF算法[J]. 船舶工程, 2018, 40 (S1): 206-211, 229.
    [7]
    Wang L L, Pan L X. Adaptive Variable Structure Control with Neuron for Path Tracking of Beaver AUV[J]. IEEE Access, 2020, 8: 48566-48575.
    [8]
    Che G, Zhen Yu. Neural-network Estimators Based Fault-tolerant Tracking Control for AUV via ADP with Rudders Faults and Ocean Current Disturbance[J]. Neurocomputing, 2020, 411: 442-454.
    [9]
    Cho G R, Park D G, Kang H, et al. Horizontal Trajectory Tracking of Underactuated AUV Using Backstepping Ap-proach[J]. IFAC-Papers Online, 2019, 52(16): 174-179.
    [10]
    Xia Y, Xu K, Li Y, et al. Improved Line-of-sight Trajectory Tracking Control of Under-actuated AUV Subjects to Ocean Currents and Input Saturation[J]. Ocean Engineering, 2019, 174(15): 14-30.
    [11]
    Sarhadi P, Noei A R, Khosravi A. Adaptive Integral Feedback Controller for Pitch and Yaw Channels of an AUV with Actuator Saturations[J]. Isa Transactions, 2016, 65: 284-295.
    [12]
    Yu C, Xiang X, Zhang Q, et al. Adaptive Fuzzy Trajectory Tracking Control of an Under-Actuated Autonomous Underwater Vehicle Subject to Actuator Saturation[J]. International Journal of Fuzzy Systems, 2018, 20(1): 269-279.
    [13]
    江梦洁, 李家旺, 吕艳芳, 等. 饱和输入限制下欠驱动自主水下航行器水平面轨迹跟踪控制[J]. 兵工学报, 2017, 38(11): 2207-2213.

    Jiang Meng-jie, Li Jia-wang, Lü Yan-fang, et al. Path Tracking Control of Underactuated Autonomous Underwater Vehicles on Horizontal Plane within Input Saturation Limit[J]. Acta Armamentarii, 2017, 38(11): 2207- 2213.
    [14]
    杨立平, 张铭钧, 褚振忠, 等. 水下机器人抗积分饱和控制及主动容错控制方法[J]. 哈尔滨工程大学学报, 2010, 31(6): 755-761.

    Yang Li-ping, Zhang Ming-jun, Chu Zhen-zhong, et al. Anti-windup Control and Active Fault Tolerant Control Methods for Autonomous Underwater Vehicles[J]. Journal of Harbin Engineering University, 2010, 31(6): 755-761.
    [15]
    王芳, 万磊, 李晔, 等. 欠驱动AUV的运动控制技术综述[J]. 中国造船, 2010, 51(2): 227-241.

    Wang Fang, Wan Lei, Li Ye, et al. A Survey on Develop-ment of Motion Control for Underactuated AUV[J]. Shipbuilding of China, 2010, 51(2): 227-241.
    [16]
    Sarhadi P, Noei A R, Khosravi A. Adaptive Integral Feedback Controller for Pitch and Yaw Channels of an AUV with Actuator Saturations[J]. ISA Trans, 2016, 65: 284-295.
    [17]
    Fossen T I. Guidance and Control of Ocean Vehicles[M]. New York: John Wiley & Sons Inc, 1994.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2615) PDF Downloads(51) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return