• 中国科技核心期刊
  • JST收录期刊
Volume 30 Issue 1
Feb  2022
Turn off MathJax
Article Contents
ZHANG Xiao-fei, XIN Ming-zhen, SUI Hai-chen, LEI Peng, LIU Yi-cheng, YANG Fan-lin. AUV Ultra-short Baseline Tracking Algorithm Based on Interactive Multi-Model Kalman Filter[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 29-36. doi: 10.11993/j.issn.2096-3920.2022.01.004
Citation: ZHANG Xiao-fei, XIN Ming-zhen, SUI Hai-chen, LEI Peng, LIU Yi-cheng, YANG Fan-lin. AUV Ultra-short Baseline Tracking Algorithm Based on Interactive Multi-Model Kalman Filter[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 29-36. doi: 10.11993/j.issn.2096-3920.2022.01.004

AUV Ultra-short Baseline Tracking Algorithm Based on Interactive Multi-Model Kalman Filter

doi: 10.11993/j.issn.2096-3920.2022.01.004
  • Received Date: 2021-01-09
  • Rev Recd Date: 2021-04-25
  • Publish Date: 2022-02-28
  • Owing to complex marine environments, the tracking and positioning of autonomous undersea vehicles (AUVs) that use ultra-short baseline may be affected by various errors, and a Kalman filter based on the minimum mean square error is usually used to process the dynamic positioning data. It is important to ensure the accuracy and reliability of the Kalman filtering to construct a motion model that matches the actual motion of the target. However, the AUV is characterized by strong maneuverability, which often renders it difficult to a priori determine a single motion model to achieve the matching of all motion states. To address the inability of the single-model based Kalman filter to adapt to all the motion states of an underwater target, an interactive multi-model Kalman filter(IMMKF) algorithm was used to process the ultra-short baseline tracking data of an AUV. Furthermore, a probability matrix transfer between motion models was used to enhance the adaptability of motion states. The experimental results showed that the IMMKF algorithm was better than the Kalman filter algorithm for a single model when the multi model set was constructed reasonably.

     

  • loading
  • [1]
    Xin M Z, Yang F L, Liu H, et al. Single-Difference Dynamic Positioning Method for GNSS-Acoustic Intelligent Buoys Systems[J]. Journal of Navigation, 2020, 73(3): 646-657.
    [2]
    Eric W, Michael A, John C, et al. Field Testing of Moving Short-baseline Navigation for Autonomous Underwater Vehicles Using Synchronized Acoustic Messaging[J]. Journal of Field Robotics, 2013, 30(4): 519-535.
    [3]
    Huang J, Yan S G. A Precise Positioning Algorithm for Long Baseline Positioning System with Uncertain Sound Speed[C]//2nd International Conference on Applied Mathematics, Simulation and Modelling. Phuket, Thailand: Adv Sci & Ind Res Ctr, Phuket, 2017: 160-165.
    [4]
    Francesco F, Niccolò M, Nicola P, et al. Development of an Ultra Short Baseline-aided Buoy for Underwater Targets Localization[J]. Journal of Engineering for the Maritime Environment, 2019, 233(4): 1212-1225.
    [5]
    辛明真, 阳凡林, 薛树强, 等. 顾及波束入射角的常梯度声线跟踪水下定位算法[J]. 测绘学报, 2020, 49(12): 1535-1542.

    Xin Ming-zhen, Yang Fan-lin, Xue Shu-qiang, et al. A Constant Gradient Sound Ray Tracing Underwater Positioning Algorithm Considering Incident Beam Angle[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1535-1542.
    [6]
    刘百峰, 罗坤. 超短基线定位系统误差分析与仿真[J]. 舰船电子工程, 2020, 40(5): 57-59, 84.

    Liu Bai-feng, Luo Kun. Error Analysis and Emulator of Ultra-short Base Line System[J]. Ship Electronic Engineering, 2020, 40(5): 57-59, 84.
    [7]
    Liu H M, Wang Z J, Shan R, et al. Research into the Integrated Navigation of a Deep-sea towed Vehicle with USBL/DVL and Pressure Gauge[J]. Applied Acoustics, 2020, 159: 107052.
    [8]
    辛明真. GNSS-A水下定位与导航关键技术研究[D]. 青岛: 山东科技大学, 2020.
    [9]
    房晓丽, 陈玉敏, 方鑫钰. Singer模型算法在目标跟踪中的应用研究[J]. 电脑知识与技术, 2020, 16(27): 7-10.

    Fang Xiao-li, Chen Yu-min, Fang Xin-yu. Research on Application of Singer Model Algorithm in Target Tracking[J]. Computer Knowledge and Technology, 2020, 16 (27): 7-10.
    [10]
    傅虹景, 于守江, 吉峰, 等. 基于“当前”统计模型的变结构交互多模型算法[J]. 无线电工程, 2020, 50(4): 318-322.

    Fu Hong-jing, Yu Shou-jiang, Ji Feng, et al. Variable Structure Interactive Multiple Model Algorithm Based on Current Statistical Model[J]. Radio Engineering, 2020, 50(4): 318-322.
    [11]
    Meng Q H, Hou B W, Li D, et al. Performance Analysis and Comparison for High Maneuver Target Track Based on Different Jerk Models[J]. Journal of Control Science and Engineering, 2018, 2018: 1-6.
    [12]
    Blom H A P, Bar-Shalom Y. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients[J]. IEEE Transactions on Automatic Control, 1988, 33(8): 780-783.
    [13]
    Hou B W, Wang J Q, He Z M, et al. Novel Interacting Multiple Model Filter for Uncertain Target Tracking Systems Based on Weighted Kullback-Leibler Divergence[J]. Journal of the Franklin Institute, 2020, 357(17): 13041-13084.
    [14]
    Afshari H H, Dhafar Al-Ani, Saeid Habibi. A New Adaptive Control Scheme Based on the Interacting Multiple Model(IMM) Estimation[J]. Journal of Mechanical Science and Technology, 2016, 30(6): 2759-2767.
    [15]
    邹翔宇. 基于交互多模型的多滤波器机动目标跟踪研究[D]. 武汉: 武汉理工大学, 2019.
    [16]
    张杨. 改进的基于隐马尔可夫模型的自适应IMM算法[J]. 海军航空工程学院学报, 2018, 33(6): 531-538, 572.

    Zhang Yang. Improved Adaptive IMM Algorithm Based on Hidden Markov Model[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(6): 531-538, 572.
    [17]
    赵振轶, 李亚安, 陈晓, 等. 基于双观测站的水下机动目标被动跟踪[J]. 水下无人系统学报, 2018, 26(1): 40-45.

    Zhao Zhen-yi, Li Ya-an, Chen Xiao, et al. Passive Tracking of Underwater Maneuvering Target Based on Double Observation Station[J]. Journal of Unmanned Undersea Systems, 2018, 26(1): 40-45.
    [18]
    吴新宏, 张紫琪, 王磊, 等. 基于自适应IMM算法的蛇形机动目标加速度估计研究[J]. 上海航天(中英文), 2020, 37(1): 18-23.

    Wu Xin-hong, Zhang Zi-qi, Wang Lei, et al. Research on the Acceleration Estimation of Serpentine Maneuvering Target Based on the Adaptive IMM Algorithm[J]. Aerospace Shanghai(Chinese & English), 2020, 37(1): 18-23.
    [19]
    张蕾. IMM算法在雷达目标跟踪中的研究[J]. 民航学报, 2019, 3(1): 22-25, 4.

    Zhang Lei. Research on IMM Algorithm in Radar Target Tracking[J]. Journal of Civil Aviation, 2019, 3(1): 22-25, 4.
    [20]
    金博楠, 徐晓苏, 张涛, 等. 超短基线定位技术及在海洋工程中的应用[J]. 导航定位与授时, 2018, 5(4): 8-20.

    Jin Bo-nan, Xu Xiao-su, Zhang Tao, et al. USBL Technology and Its Applications in Ocean Engineering[J]. Navigation Positioning & Timing, 2018, 5(4): 8-20.
    [21]
    吴永亭, 周兴华, 杨龙. 水下声学定位系统及其应用[J]. 海洋测绘, 2003, 23(4): 18-21.

    Wu Yong-ting, Zhou Xing-hua, Yang Long. Underwater Acoustic Positioning System and Its Application[J]. Hydrographic Surveying and Charting, 2003, 23(4): 18-21.
    [22]
    刘焱雄, 彭琳, 吴永亭, 等. 超短基线水声定位系统校准方法研究[J]. 武汉大学学报(信息科学版), 2006, 31 (7): 610-612.

    Liu Yan-xiong, Peng Lin, Wu Yong-ting, et al. Calibration of Transducer and Transponder Positions[J]. Geomatics and Information Science of Wuhan University, 2006, 31 (7): 610-612.
    [23]
    冯守珍, 吴永亭, 唐秋华. 超短基线声学定位原理及其应用[J]. 海岸工程, 2002, 21(4): 13-18.

    Feng Shou-zhen, Wu Yong-ting, Tang Qiu-hua. Principle and Application of Ultrashort Baseline Acoustic Positioning System[J]. Coastal Engineering, 2002, 21(4): 13-18.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(133) PDF Downloads(50) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return