• 中国科技核心期刊
  • JST收录期刊
Volume 30 Issue 5
Oct  2022
Turn off MathJax
Article Contents
ZHAO Zhi-chao, LI Tian-chen, GU Hai-tao, GAO Hao. Research on Unpowered Trim Ascent Motion Characteristics of Deep-sea Vehicles[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 586-596. doi: 10.11993/j.issn.2096-3920.202111001
Citation: ZHAO Zhi-chao, LI Tian-chen, GU Hai-tao, GAO Hao. Research on Unpowered Trim Ascent Motion Characteristics of Deep-sea Vehicles[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 586-596. doi: 10.11993/j.issn.2096-3920.202111001

Research on Unpowered Trim Ascent Motion Characteristics of Deep-sea Vehicles

doi: 10.11993/j.issn.2096-3920.202111001
  • Received Date: 2021-11-08
  • Accepted Date: 2022-08-15
  • Rev Recd Date: 2021-12-28
  • Available Online: 2022-09-05
  • To improve the ascent response speed of unpowered deep-sea vehicles, and meet the requirements of mission loads for its water-exit attitude, considering the effect of ocean currents and buoyancy changes, a space motion simulation model of the vehicle was established. The quaternion method and the space motion equation of autonomous undersea vehicles were used to solve the singular problem of a large trim angle and vertical ascent motion. The effects of net buoyancy, distance between the center of gravity and buoyancy, rudder angle, initial launch conditions, and marine environmental disturbances on the trim ascent motion of the vehicle were explored and investigated. The results show that the space motion equation of a deep-sea vehicle based on the quaternion method can effectively avoid solving the singular problem of the attitude when the vehicle is ascending at a large trim angle or vertical attitude. Unpowered deep-sea vehicles can achieve a large vertical ascent speed and reduce the horizontal drift distance with a large trim angle or a vertical attitude. The disturbance of buoyancy changes and initial launch conditions have a great influence on the ascent state of the vehicle. The research provides references for the overall layout and the prediction of large trim angles and vertical ascents of deep-sea vehicles.

     

  • loading
  • [1]
    胡中惠, 曲文新, 刘帅, 等. 载人潜水器无动力潜浮运动压载匹配方法研究[J]. 船舶力学, 2020, 24(11): 1422-1432. doi: 10.3969/j.issn.1007-7294.2020.11.006

    Hu Zhong-hui, Qu Wen-xin, Liu Shuai, et al. Payload Calculation for Unpowered Ascent & Descent of Manned Vehicles[J]. Journal of Ship Mechanics, 2020, 24(11): 1422-1432. doi: 10.3969/j.issn.1007-7294.2020.11.006
    [2]
    于鹏垚, 王天霖, 甄春博, 等. 水下滑翔机的稳态运动速度分析[J]. 哈尔滨工程大学学报, 2018, 39(11): 1767-1772. doi: 10.11990/jheu.201705030

    Yu Peng-yao, Wang Tian-lin, Zhen Chun-bo, et al. Analysis of the Steady-state Motion Velocity of an Underwater Glider[J]. Journal of Harbin Engineering University, 2018, 39(11): 1767-1772. doi: 10.11990/jheu.201705030
    [3]
    沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-rui, Wang Yan-hui, Yang Shao-qiong, et al. Development of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [4]
    张天健, 魏成柱, 张裕芳, 等. 大深度浮力驱动式水下运载器的浮潜运动研究[J]. 船舶工程, 2017, 39(12): 87-94.

    Zhang Tian-jian, Wei Cheng-zhu, Zhang Yu-fang, et al. Study on Floating and Diving for Deep-water Buoyancy-driven Vehicle[J]. Ship Engineering, 2017, 39(12): 87-94.
    [5]
    张海洋, 谷海涛, 林扬, 等. 无动力运载器倾斜爬升式上浮特性分析[J]. 中国舰船研究, 2020, 15(1): 38-47.

    Zhang Hai-yang, Gu Hai-tao, Lin Yang, et al. Analysis of Inclined Climbing Floating Characteristics of Unpowered Vehicle[J]. Chinese Journal of Ship Research, 2020, 15(1): 38-47.
    [6]
    徐正武, 唐国元, 邓智勇, 等. 四元数在水下航行体运动建模中的应用[J]. 中国舰船研究, 2014, 9(2): 12-16.

    Xu Zheng-wu, Tang Guo-yuan, Deng Zhi-yong, et al. Applying the Four-parameter Approach to Establish the Motion Model of an AUV[J]. Chinese Journal of Ship Research, 2014, 9(2): 12-16.
    [7]
    王海涛, 彭绍雄, 邹强, 等. 无动力运载器出水过程误差分析[J]. 现代防御技术, 2014, 42(5): 133-138. doi: 10.3969/j.issn.1009-086x.2014.05.024

    Wang Hai-tao, Peng Shao-xiong, Zou Qiang, et al. Error Analysis of Water-Exit Process for Unpowered Vehicle[J]. Modern Defence Technology, 2014, 42(5): 133-138. doi: 10.3969/j.issn.1009-086x.2014.05.024
    [8]
    耿斌斌, 徐志程, 裴胤. 无动力运载器水下运动建模与仿真[J]. 计算机仿真, 2017, 34(7): 6-9. doi: 10.3969/j.issn.1006-9348.2017.07.002

    Geng Bin-bin, Xu Zhi-cheng, Pei Yin. Modeling and Simulation of Underwater Motion for Unpowered Vehicle[J]. Computer Simulation, 2017, 34(7): 6-9. doi: 10.3969/j.issn.1006-9348.2017.07.002
    [9]
    高伟, 李天辰, 谷海涛, 等. 深海AUV无动力下潜运动特性研究[J]. 机器人, 2021, 43(6): 674-683.

    Gao Wei, Li Tian-cheng, Gu Hai-tao, et al. Unpowered Diving Motion Characteristics of Deep-sea Autonomous Underwater Vehicle[J]. Robot, 2021, 43(6): 674-683.
    [10]
    Antonelli G. Underwater Robots: Motion and Force Control of Vehicle-manipulator Systems[M]. Italy: Springer, 2003: 3-15.
    [11]
    Prestero T. Verification of a Six-degree of Freedom Simulation Model for the REMUS Autonomous Underwater vehicle[D]. Boston: Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, 2001: 57-61.
    [12]
    Prestero T. Development of a Six-degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle[C]//Annual Conference of the Marine-Technology-Society. Honolulu, HI, USA: IEEE, 2001: 450-455.
    [13]
    姚红, 程文华, 张雅声. 飞行器动力学与控制Simulink仿真[M]. 北京: 国防工业出版社, 2018: 3-20.
    [14]
    刘水庚. 海洋工程水动力学[M]. 北京: 国防工业出版社, 2012: 47-48.
    [15]
    刘金夫. 洋流影响下的水下滑翔机垂直面内滑翔运动数值仿真[D]. 武汉: 华中科技大学, 2016.
    [16]
    徐会希, 尹远, 赵宏宇. 自主水下机器人[M]. 北京: 龙门书局, 2019: 73-75.
    [17]
    Office of Ocean Exploration and Research. CAPSTONE CNMI & Mariana Trench MNM (ROV & Mapping)-EX1605L3[EB/OL]. (2014-02-25)[2021-11-05]. https://www.ncei.noaa.gov/waf/okeanos-rov-cruises/ex1605l3/.
    [18]
    武建国, 徐会希, 刘健, 等. 深海AUV下潜过程浮力变化研究[J]. 机器人, 2014, 36(4): 455-460.

    Wu Jian-guo, Xu Hui-xi, Liu Jian, et al. Research on the Buoyancy Change of Deep-sea Autonomous Underwater Vehicle in Diving Process[J]. Robot, 2014, 36(4): 455-460.
    [19]
    赵桥生, 何春荣, 李德军, 等. 载人潜水器空间运动仿真计算研究[C]//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集(下册). 合肥: 《水动力学研究与进展》杂志社, 2019: 372-378.
    [20]
    严升, 张润锋, 杨绍琼, 等. 水下滑翔机纵垂面变浮力过程建模与控制优化[J]. 中国机械工程, 2021, 33(1): 109-117.

    Yan Sheng, Zhang Run-feng, Yang Shao-qiong, et al. Modelling and Control Optimization for Underwater Gliders of Variable Buoyancy Process in the Vertical Plane[J]. China Mechanical Engineering, 2021, 33(1): 109-117.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article Views(2091) PDF Downloads(42) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return