• 中国科技核心期刊
  • JST收录期刊
WANG Jia-bei, ZHOU Hao. Low Frequency Coupling Sound Absorption Mechanism and Regulation Law of Underwater Acoustic Coating[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 775-781. doi: 10.11993/j.issn.2096-3920.2021.06.019
Citation: WANG Jia-bei, ZHOU Hao. Low Frequency Coupling Sound Absorption Mechanism and Regulation Law of Underwater Acoustic Coating[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 775-781. doi: 10.11993/j.issn.2096-3920.2021.06.019

Low Frequency Coupling Sound Absorption Mechanism and Regulation Law of Underwater Acoustic Coating

doi: 10.11993/j.issn.2096-3920.2021.06.019
  • Received Date: 2021-03-17
  • Rev Recd Date: 2021-04-07
  • Publish Date: 2021-12-31
  • The underwater acoustic coating has a significant influence on the acoustic stealth performance of underwater vehicles. To enhance the low-frequency sound absorption performance of the underwater acoustic coating, a composite model with a local resonance structure embedded into the cavity-type coating is established based on the finite element method, and its sound absorption performance is studied in the 10-2 000 Hz band. The structural vibration mode of the film quality of the composite model is analyzed using local resonance theory. The sound absorption mechanism of the composite model is analyzed in combination with the vibration displacement contour of the cavity-type coating. In addition, by adjusting the geometric parameters of the model, the law affecting the change in sound absorption performance is obtained. The results show that: 1) the coupling between the cavity-type coating and the local resonance structure can improve the low-frequency sound absorption effect and widen the sound absorption band; 2) the sound absorption mechanism of the composite structure is as follows: the cavity in the lower part deforms to realize the transformation of P-wave to S-wave and the upward vibration of the local resonance structure consumes sound energy, which work together to improve the sound absorption coefficient; 3) the sound absorption peak generated by coupling mainly increases with the increase in the loss factor of the coating, and the frequency of the sound absorption peak mainly moves to a high frequency with an increase in the film area.

     

  • loading
  • [1]
    朱蓓丽, 黄修长. 潜艇隐身关键技术—声学覆盖层的设计[M]. 上海: 上海交通大学出版社, 2012.
    [2]
    黄凌志, 肖勇, 温激鸿, 等. 一种含横向圆柱形空腔的声学覆盖层的去耦机理分析[J]. 物理学报, 2015, 64: 154301.

    Huang Ling-zhi, Xiao Yong, Wen Ji-hong, et al. Analysis of Decoupling Mechanism of an Acoustic Coating Layer with Horizontal Cylindrical Cavities[J]. Acta Phys Sin, 2015, 64: 154301.
    [3]
    陶猛, 汤渭霖. Alberich型吸声覆盖层的低频吸声机理分析[J]. 振动与冲击, 2011, 30(1): 56-60.

    Tao Meng, Tang Wei-lin. Analysis on the Mechanism of Alberich Type Sound Absorption Coating at Low Frequency[J]. Journal of Vibration and Shock, 2011, 30(1): 56-60.
    [4]
    叶韩峰, 陶猛, 李俊杰. 基于COMSOL的空腔型声学覆盖层的斜入射吸声性能分析[J]. 振动与冲击, 2019, 38(12): 213-218.

    Ye Han-feng, Tao Meng, Li Jun-jie. Analysis of Acoustic Absorption Performance Based on COMSOL Cavity Acoustic Overlay at Oblique Incidence[J]. Journal of Vibration and shock, 2019, 38(12): 213-218.
    [5]
    商超, 魏英杰, 张嘉钟. 基于有限元法的Alberich型覆盖层吸声特性研究[J]. 船舶力学, 2011, 15(4): 443-448.

    Shang Chao, Wei Ying-jie, Zhang Jia-zhong, et al. Study on the Sound Absorption Characteristics of Alberich Overburden Based on Finite Element Method[J]. Journal of Ship Mechanics, 2011, 15(4): 443-448.
    [6]
    Valentin L, Anatoliy S, Maxime L, et al. Super-Absorption of Acoustic Waves with Bubble Meta-Screens[J]. Physical Review B: Condensed Matter and Materials Physics, American Physical Society, 2015: 020301(R).
    [7]
    柯李菊, 刘成洋, 方智. 基于COMSOL的组合空腔结构声学覆盖层的声学性能分析[J]. 中国舰船研究, 2020, 15(5): 167-175, 182.

    Ke Li-ju, Liu Cheng-yang, Fang Zhi. Acoustic Performance Analysis of Composite Cavity Structure Acoustic Overlay Based on COMSOL[J]. Journal of Research on Chinese Ship, 2020, 15(5): 167-175, 182.
    [8]
    刘国强, 楼京俊, 何世平, 等. 基于COMSOL多层材料吸声覆盖层的吸声特性分析[J]. 舰船科学技术, 2016, 38(4): 35-37.

    Liu Guo-qiang, Lou Jing-jun, He Shi-ping, et al. Analysis of Sound Absorption Characteristics Based on COMSOL Multi-layer Material Sound Absorption Overlay[J]. Journal of Ship Science and Technology, 2016, 38(4): 35-37.
    [9]
    Zhao H, Liu Y, Wen J, et al. Tri-component Phonoic Crystals for Underwater Anechoic Coatings[J]. Phys Lett A, 2007, 367: 224-232.
    [10]
    Zhao H, Wen J, Yu D, et al. Low-frequency Acoustic Absorption of Localized Resonances: Experiment and Theory[J]. Appl Phys, 2010, 107: 023519.
    [11]
    Yang Z, Mei J, Yang M, et al. Membrane-type Acoustic Metamaterial With Negative Dynamic Mass[J]. Physical Review Letters, 2008, 101(20): 115-118.
    [12]
    Naify C J, Chang C M, Mcknight G, et al. Membrane-type Metamaterials: Transmission Loss of Multi-celled Arrays[J]. Journal of Applied Physics, 2011, 109: 104902.
    [13]
    Naify C J, Chang C M, Mcknight G, et al. Transmission Loss of Membrane-type Acoustic Metamaterials with Coaxial Ring Masses[J]. Journal of Applied Physics, 2011, 110(23): 124903.
    [14]
    Ma G, Yang M, Xiao S, et al. Acoustic Metasurface with Hybrid Resonances[J]. Nature Materials, 2014, 13(9): 873-878.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(152) PDF Downloads(79) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return