• 中国科技核心期刊
  • JST收录期刊
CHANG Wen, WEI Hai-feng, ZHANG Yi, LI Yuan-jiang, WANG Wei-ran, LIU Wei-ting. Research on Key Technologies of Undersea Vehicle Multi-Motor Propulsion System[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 716-724. doi: 10.11993/j.issn.2096-3920.2021.06.011
Citation: CHANG Wen, WEI Hai-feng, ZHANG Yi, LI Yuan-jiang, WANG Wei-ran, LIU Wei-ting. Research on Key Technologies of Undersea Vehicle Multi-Motor Propulsion System[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 716-724. doi: 10.11993/j.issn.2096-3920.2021.06.011

Research on Key Technologies of Undersea Vehicle Multi-Motor Propulsion System

doi: 10.11993/j.issn.2096-3920.2021.06.011
  • Received Date: 2021-06-21
  • Rev Recd Date: 2021-07-16
  • Publish Date: 2021-12-31
  • The body balance of an underwater vehicle under complex ocean current interference is of great significance for subsequent navigation and path planning. Under nonlinear, time-varying, and coupled flow disturbances, there are three key technical difficulties in the multi-motor propulsion system of undersea vehicles that have become the current research focus: coordinated distribution of multi-motor thrust with the lowest total energy consumption; multi-motor cooperative drive with high dynamic and robustness; and fault diagnosis and fault-tolerant control of multi-motor cooperative drive. In this regard, this paper summarizes the research status of each difficult problem and elaborates on the current typical control strategy. Finally, the future development trend of the undersea vehicle multi-motor propulsion system is summarized from two perspectives: propulsion motor selection and multi-motor propulsion system topology.

     

  • loading
  • [1]
    Brito M P, Lewis R S, Bose N, et al. Adaptive Autonomous Underwater Vehicles: An Assessment of Their Effectiveness for Oceanographic Applications[J]. IEEE Transactions on Engineering Management, 2019, 66(1): 98-111.
    [2]
    Makavita C D, Jayasinghe S G, Nguyen H D, et al. Ex-perimental Study of Command Governor Adaptive Control for Unmanned Underwater Vehicles[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 332- 345.
    [3]
    Souza De E C, Maruyama N. Intelligent UUVs: Some Issues on ROV Dynamic Positioning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 214-226.
    [4]
    Ma Y N, Gong Y J, Xiao C F, et al. Path Planning for Au-tonomous Underwater Vehicles: An Ant Colony Algorithm Incorporating Alarm Pheromone[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 141-154.
    [5]
    Chu Z Z, Zhu D Q, Yang S X. Observer-Based Adaptive Neural Network Trajectory Tracking Control for Remotely Operated Vehicle[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(7): 1633-1645.
    [6]
    高胜, 赵璇, 李美杰, 等. 开架式ROV动力匹配稳态与动态设计方法[J]. 船舶工程, 2018, 40(8): 87-93.

    Gao Sheng, Zhao Xuan, Li Mei-jie, et al. Power Matching Stability and Motion Design Method of Open-shelf ROV[J]. Ship Engineering, 2018, 40(8): 87-93.
    [7]
    Song Z, Sun K. Adaptive Compensation Control for Attitude Adjustment of Quad-rotor Unmanned Aerial Vehicle[J]. ISA Transactions, 2017, 69: 242-255.
    [8]
    Huang K, Shao K, Zhen S C, et al. A Novel Approach for Trajectory Tracking Control of An Under-Actuated Quad-Rotor UAV[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 99: 1-10.
    [9]
    Qiao L, Yi B, Wu D F. Design of Three Exponentially Convergent Robust Controllers for the Trajectory Tracking of Autonomous Underwater Vehicles[J]. Ocean Engineering, 2017, 134(1): 157-172.
    [10]
    聂永芳, 潘爽, 孙东平, 等. 基于同时定位与地图构建的AUV导航定位方法综述[J]. 航天控制, 2018, 36(3): 79-85.

    Nie Yong-fang, Pan Shuang, Sun Dong-ping, et al. Review of Simultaneous Localization and Mapping for AUV[J]. Aerospace Control, 2018, 36(3): 79-85.
    [11]
    马艳彤, 郑荣, 于闯. 过渡目标值的非线性PID对自治水下机器人变深运动的稳定控制[J]. 控制理论与应用, 2018, 35(8): 1120-1125.

    Ma Yan-tong, Zheng Rong, Yu Chuang. Autonomous Un-derwater Vehicle Deepening Control Based 0n Transiting target Value Nonlinear PID[J]. Control Theory & Applications, 2018, 35(8): 1120-1125.
    [12]
    魏延辉, 陈巍, 杜振振, 等. 深海ROV伺服控制方法研究及其仿真[J]. 控制与决策, 2015, 30(10): 1785-1790.

    Wei Yan-hui, Chen Wei, Du Zhen-zhen, et al. Servo Control Method of ROV and Simulation[J]. Control and Decision, 2015, 30(10): 1785-1790.
    [13]
    Yang C, Li H S. Digital Control System for the MEMS Tuning Fork Gyroscope Based on Synchronous Integral Demodulator[J]. IEEE Sensors Journal, 2015, 15(10): 5755-5764.
    [14]
    Zhang C N, Zhang S, Han G W, et al. Power Management Comparison for a Dual-Motor-Propulsion System Used in a Battery Electric Bus[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3873-3882.
    [15]
    Monroy A, Campos E, Torres J A. Attitude Control of a Micro AUV through an Embedded System[J]. IEEE Latin America Transactions, 2017, 15(4): 603-612.
    [16]
    Cui R, Yang C G, Li Y, et al. Adaptive Neural Network Control of AUVs with Control Input Nonlinearities Using Reinforcement Learning[J]. IEEE Transactions on Sys- tems, Man, and Cybernetics: Systems, 2017, 47(6): 1019- 1029.
    [17]
    刘国海, 陈仁杰, 张多, 等. 两电机调速系统的神经网络逆无模型自适应鲁棒解耦控制[J]. 中国电机工程学报, 2019, 39(3): 868-874.

    Liu Guo-hai, Chen Ren-jie, Zhang Duo, et al. Model-free Adaptive Robust Control for Two Motor Drive System Based on Neural Network Inversion[J]. Proceedings of the CSEE, 2019, 39(3): 868-874.
    [18]
    刘国海, 张懿, 魏海峰, 等. 基于自抗扰控制器的两电机变频调速系统最小二乘支持向量机逆控制[J]. 中国电机工程学报, 2012, 32(6): 138-144.

    Liu Guo-hai, Zhang Yi, Wei Hai-feng, et al. Least Squares Support Vector Machines Inverse Control for Two-motor Variable Frequency Speed-regulating System Based on Active Disturbances Rejection[J]. Proceedings of the CSEE, 2012, 32(6): 138-144.
    [19]
    Niu H P, Peng Y H, He L, et al. An Approach to Master Speed Control for Coil Box in Hot Strip Mill[J]. Metallurgical Industry Automation, 2015, 35: 8-14.
    [20]
    Wu H, Zhang C F, Niu M G. Leader-Follower Flocking for Cooperative Control of Multiple Motors[C]//Chinese Automation Congress. Changsha, China: IEEE, 2015: 47-52.
    [21]
    He F, Wang C. Cross-Coupling Synchronous Control of Dual-Motor Networked Motion Control System[C]//36th Chinese Control Conference. Dalian, China: IEEE, 2017: 7628-7633.
    [22]
    Shi T N, Liu H, Geng Q, et al. Improved Relative Coupling Control Structure for Multi-Motor Speed Synchronous Driving System[J]. IET Electric Power Applications, 2016, 10(6): 451-457.
    [23]
    胡松钰, 钱松, 吴伟, 等. 相邻交叉耦合直线开关磁阻电机位置同步控制[J]. 中国电机工程学报, 2017, 37(23): 7024-7031.

    Hu Song-yu, Qian Song, Wu Wei, et al. Position Synchronization Control for Linear Switch Reluctance Motor Based on Adjacent Cross-coupling[J]. Proceedings of the CSEE, 2017, 37(23): 7024-7031.
    [24]
    耿强, 王少炜, 周湛清, 等. 改进型偏差耦合多电机转速同步控制[J]. 电工技术学报, 2019, 34(3): 474-482.

    Geng Qiang, Wang Shao-wei, Zhou Zhan-qing, et al. Multi-Motor Speed Synchronous Control Based on Im-proved Relative Coupling Structure[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 474-482.
    [25]
    Lin S Y, Cai Y Z, Yang B, et al. Electrical Line-Shafting Con-trol for Motor Speed Synchronisation Using Sliding Mode Controller and Disturbance Observer[J]. IET Control Theory & Applications, 2017, 11(2): 205-212.
    [26]
    Li L B, Sun L L. Mean Deviation Coupling Synchronous Control for Multiple Motors Via Second-Order Adaptive Sliding Mode Control[J]. ISA Transactions, 2016, 62: 222-230.
    [27]
    胥小勇, 孙宇, 蒋清海. 改进型相邻耦合结构的多电机比例同步控制[J]. 仪器仪表学报, 2012, 33(6): 1254- 1260.

    Xu Xiao-yong, Sun Yu, Jiang Qing-hai. Improved Adjacent Cross-Coupling Control Structure for Multi-Motor Proportional Synchronization Control[J]. Chinese Journal of Scientific Instrument, 2012, 33(6): 1254-1260.

    [28] 史婷娜, 辛雄, 夏长亮. 采用虚拟电机的改进偏差耦合多电机同步控制[J]. 中国电机工程学报, 2017, 37(23): 7004- 7013.

    [28]
    Shi Ting-na, Xin Xiong, Xia Chang-liang. Multi-Motor Speed Synchronous Control Based on Improved Relative Coupling Structure with a Virtual Motor[J]. Proceedings of the CSEE, 2017, 37(23): 7004-7013.
    [29]
    Bourogaoui M, Sethom H B A, Belkhodja I S. Speed/Position Sensor Fault Tolerant Control in Adjustable Speed Drives-A Review[J]. ISA Transactions, 2016, 64: 269-284.
    [30]
    毛海杰, 李炜, 王可宏, 等. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报, 2017, 47(5): 64-70.

    Mao Hai-jie, Li Wei, Wang Ke-hong. Sensor Fault Tolerant Switch Strategy for Multi-Motor Synchronous System Based on ADRC[J]. Journal of Shandong University, 2017, 47(5): 64-70.
    [31]
    Najafabadi T A, Salmasi F R, Maralani P J. Detection and Isolation of Speed, DC-link Voltage, and Current-Sensor Faults Based on an Adaptive Observer in Induction-Motor Drives[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1662-1672.
    [32]
    Marino R, Scalzi S, Tomei P, et al. Fault-Tolerant Cruise Control of Electric Vehicles with Induction Motors[J]. Control Engineering Practice, 2013, 21: 860-869.
    [33]
    Cai B P, Zhao Y B, Liu H L, et al. A Data-Driven Fault Diagnosis Methodology in Three-Phase Inverters for PMSM Drive Systems[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5590-5600.
    [34]
    毛海杰, 李炜, 蒋栋年. 基于复杂网络的多电机同步控制系统故障诊断与切换容错研究[J]. 控制与决策, 2020, 35(4): 843-851.

    Mao Hai-jie, Li Wei, Jiang Dong-nian. Fault Diagnosis and Switching Tolerance for Multi-motor Synchronous Control Based on Complex Dynamical Network[J]. Control and Decision, 2020, 35(4): 843-851.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(236) PDF Downloads(110) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return